(12)梅森素数与完全数

梅森素数与完全数

欧几里得完全数公式

如果 2 p − 1 2^p-1 2p1是素数,则 2 p − 1 ( 2 p − 1 ) 2^{p-1}(2^p-1) 2p1(2p1)是完全数。
验证 q = 2 p − 1 q=2^p-1 q=2p1,我们需要验证 2 p − 1 q 2^{p-1}q 2p1q是完全数。 2 p − 1 q 2^{p-1}q 2p1q的真因数是

1 , 2 , 4 , ⋯   , 2 p − 1 1,2,4,\cdots,2^{p-1} 1,2,4,,2p1 q , 2 q , 4 q , ⋯   , 2 p − 2 q q,2q,4q,\cdots,2^{p-2}q q,2q,4q,,2p2q

使用前一章的几何级数公式将这些数相加。几何级数公式说明

1 + x + x 2 + ⋯ + x n − 1 = x n − 1 x − 1 1+x+x^2+\cdots+x^{n-1}=\frac{x^n-1}{x-1} 1+x+x2++xn1=x1xn1

令x=2,n=p得

1 + 2 + 4 + ⋯ + 2 p − 1 = 2 p − 1 2 − 1 = 2 p − 1 = q 1+2+4+\cdots+2^{p-1}=\frac{2^p-1}{2-1}=2^p-1=q 1+2+4++2p1=212p1=2p1=q

可用x=2,n=p-1的公式计算

q + 2 q + 2 2 q + ⋯ + 2 p − 2 q = q ( 1 + 2 + 2 2 + ⋯ + 2 p − 2 = q ( 2 p − 1 − 1 2 − 1 ) = q ( 2 p − 1 − 1 ) q+2q+2^2q+\cdots+2^{p-2}q=q(1+2+2^2+\cdots+2^{p-2}=q(\frac{2^{p-1}-1}{2-1})=q(2^{p-1}-1) q+2q+22q++2p2q=q(1+2+22++2p2=q(212p11)=q(2p11)

如果将 2 p − 1 q 2^{p-1}q 2p1q的所有真因数相加,可得

q + q ( 2 p − 1 − 1 ) = 2 p − 1 q q+q(2^{p-1}-1)=2^{p-1}q q+q(2p11)=2p1q

这就证明了 2 p − 1 q 2^{p-1}q 2p1q是完全数。
事实上,求得一个梅森素数就得到了一个完全数。

欧拉完全数定理

如果n是偶完全数,则n形如

n = 2 p − 1 ( 2 p − 1 ) n=2^{p-1}(2^p-1) n=2p1(2p1)

其中 2 p − 1 2^p-1 2p1是梅森素数。
我们将在本章末尾证明欧拉定理,但首先需要讨论证明所需的函数。这个函数用希腊字母 σ \sigma σ表示,即

σ ( n ) = n 的 所 有 因 数 之 和 ( 包 括 1 与 n ) \sigma(n)=n的所有因数之和(包括1与n) σ(n)=n1n

σ \sigma σ函数公式

(a)如果p是素数, k ≥ 1 k\ge1 k1,则

σ ( p k ) = 1 + p + p 2 + ⋯ + p k = p k + 1 − 1 p − 1 \sigma(p^k)=1+p+p^2+\cdots+p^k=\frac{p^{k+1}-1}{p-1} σ(pk)=1+p+p2++pk=p1pk+11

(b)如果 g c d ( m , n ) = 1 gcd(m,n)=1 gcd(m,n)=1,则

σ ( m n ) = σ ( m ) σ ( n ) \sigma(mn)=\sigma(m)\sigma(n) σ(mn)=σ(m)σ(n)

正如 ϕ \phi ϕ函数一样,我们可使用 σ \sigma σ函数公式容易地计算大数值n的 σ ( n ) \sigma(n) σ(n)值。
证明(b)
注意,以下证明是个人通过个人所学写的,没有找到官方证明,仅供参考,欢迎指出错误。
通过算数基本定理我们可以将m写成

m = p 1 i 1 p 2 i 2 ⋯ p r i r m=p_1^{i_1}p_2^{i_2}\cdots p_r^{i_r} m=p1i1p2i2prir

其中p都是素数。而m的因数都可以写成

p 1 b 1 p 2 b 2 ⋯ p r b r p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r} p1b1p2b2prbr

其中 b k ≤ i k ( 1 ≤ k ≤ r ) b_k\le i_k(1\le k\le r) bkik(1kr)
同理

n = q 1 j 1 q 2 j 2 ⋯ q s j s n=q_1^{j_1}q_2^{j_2}\cdots q_s^{j_s} n=q1j1q2j2qsjs

m的因数

q 1 c 1 q 2 c 2 ⋯ q s c s q_1^{c_1}q_2^{c_2}\cdots q_s^{c_s} q1c1q2c2qscs

其中 c k ≤ j k ( 1 ≤ k ≤ s ) c_k\le j_k(1\le k\le s) ckjk(1ks)
同理


m n = p 1 i 1 p 2 i 2 ⋯ p r i r q 1 j 1 q 2 j 2 ⋯ q s j s mn=p_1^{i_1}p_2^{i_2}\cdots p_r^{i_r}q_1^{j_1}q_2^{j_2}\cdots q_s^{j_s} mn=p1i1p2i2prirq1j1q2j2qsjs

mn的因数

p 1 b 1 p 2 b 2 ⋯ p r b r q 1 c 1 q 2 c 2 ⋯ q s c s p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r}q_1^{c_1}q_2^{c_2}\cdots q_s^{c_s} p1b1p2b2prbrq1c1q2c2qscs

其中 b k ≤ i k ( 1 ≤ k ≤ r ) , c k ≤ j k ( 1 ≤ k ≤ s ) b_k\le i_k(1\le k\le r),c_k\le j_k(1\le k\le s) bkik(1kr)ckjk(1ks)

m的因数集为M,n的因数集为N,mn的因数集为MN那么我们要证明(b),只需要证明

M N = { i ∗ j ∣ i ∈ N , j ∈ M } MN=\{i*j|i\in N,j\in M\} MN={ijiN,jM}

因为

σ ( m n ) = σ ( m ) σ ( n ) \sigma(mn)=\sigma(m)\sigma(n) σ(mn)=σ(m)σ(n)
∑ M N = ∑ M ∗ ∑ N \sum{MN}=\sum{M}*\sum{N} MN=MN
∑ M N = ∑ { i ∗ j ∣ i ∈ N , j ∈ M } \sum{MN}=\sum\{i*j|i\in N,j\in M\} MN={ijiN,jM}

我们要证明二者相等我们需要证明两条
(1)涵盖
只需要注意到对于任意的 p 1 b 1 p 2 b 2 ⋯ p r b r p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r} p1b1p2b2prbr,对应于乘积式里每个素数对应次幂的项的乘积。前者每一个数都会在后者集合中出现。
(2)不重复
我们假设a,b是后者集合中的不同的项,且a=b, a = p 1 b 1 p 2 b 2 ⋯ p r b r a=p_1^{b_1}p_2^{b_2}\cdots p_r^{b_r} a=p1b1p2b2prbr b = p 1 d 1 p 2 d 2 ⋯ p r d r b=p_1^{d_1}p_2^{d_2}\cdots p_r^{d_r} b=p1d1p2d2prdr,因为算数基本定理,一个数只有一种素因数分解,这与前面两种分解冲突了,所以后者没有重复项。

综上,得证。

欧拉完全数定理

如果n是偶完全数,则n形如

n = 2 p − 1 ( 2 p − 1 ) n=2^{p-1}(2^p-1) n=2p1(2p1)

其中 2 p − 1 2^p-1 2p1是梅森素数。
证明假设n是偶完全数。n是偶数说明可将它分解成

n = 2 k m , k ≥ 1 且 m 是 奇 数 n=2^km,k\ge1且m是奇数 n=2km,k1m

下面用 σ \sigma σ函数公式计算 σ ( n ) \sigma(n) σ(n)
σ ( n ) = σ ( 2 k m ) \sigma(n)=\sigma(2^km) σ(n)=σ(2km)因为 n = 2 k m , n=2^k m, n=2km,
= σ ( 2 k ) σ ( m ) =\sigma(2^k)\sigma(m) =σ(2k)σ(m)使用 σ \sigma σ的乘法公式与事实 g c d ( 2 k , m ) = 1 , gcd(2^k,m)=1, gcd(2k,m)=1,
= ( 2 k + 1 − 1 ) σ ( m ) =(2^{k+1}-1)\sigma(m) =(2k+11)σ(m)使用 p = 2 p=2 p=2 σ ( p k ) \sigma(p^k) σ(pk)的公式。

但由假设n是完全数,这意味着 σ ( n ) = 2 n = 2 k + 1 m \sigma(n)=2n=2^{k+1}m σ(n)=2n=2k+1m。所以得到 σ ( n ) \sigma(n) σ(n)的两种不同表示,且他们必然相等:

2 k + 1 m = ( 2 k + 1 − 1 ) σ ( m ) 2^{k+1}m=(2^{k+1}-1)\sigma(m) 2k+1m=(2k+11)σ(m)

显然 2 k + 1 − 1 2^{k+1}-1 2k+11是奇数,且 ( 2 k + 1 − 1 ) σ ( m ) (2^{k+1}-1)\sigma(m) (2k+11)σ(m) 2 k + 1 2^{k+1} 2k+1的倍数,所以 2 k + 1 2^{k+1} 2k+1必整除 σ ( m ) \sigma(m) σ(m)。换句话说,存在整数c使得 σ ( m ) = 2 k + 1 c \sigma(m)=2^{k+1}c σ(m)=2k+1c。将其代入前面的等式得

2 k + 1 m = ( 2 k + 1 − 1 ) σ ( m ) = ( 2 k + 1 − 1 ) 2 k + 1 c 2^{k+1}m=(2^{k+1}-1)\sigma(m)=(2^{k+1}-1)2^{k+1}c 2k+1m=(2k+11)σ(m)=(2k+11)2k+1c

从两边消去 2 k + 1 2^{k+1} 2k+1 m = ( 2 k + 1 − 1 ) c m=(2^{k+1}-1)c m=(2k+11)c
接下来我们通过假设 c > 1 c>1 c>1并推出错误结论来证明c=1,则 m = ( 2 k + 1 − 1 ) c m=(2^{k+1}-1)c m=(2k+11)c被不同的数1,c,m整除,不论何种情况,可求得

σ ( m ) ≥ 1 + c + m = 1 + c + ( 2 k + 1 − 1 ) c = 1 + 2 k + 1 c \sigma(m)\ge1+c+m=1+c+(2^{k+1}-1)c=1+2^{k+1}c σ(m)1+c+m=1+c+(2k+11)c=1+2k+1c

然而,我们还知道 σ ( m ) = 2 k + 1 c \sigma(m)=2^{k+1}c σ(m)=2k+1c所以

2 k + 1 c ≥ 1 + 2 k + 1 c 2^{k+1}c\ge1+2^{k+1}c 2k+1c1+2k+1c

这显然是荒谬的。这个矛盾表明c必等于1,即

m = ( 2 k + 1 − 1 ) 且 σ ( m ) = 2 k + 1 = m + 1 m=(2^{k+1}-1)且\sigma(m)=2^{k+1}=m+1 m=(2k+11)σ(m)=2k+1=m+1

显然m的因数只有1和m,所以m是素数。
现在我们证明了如果n是偶完全数,则

n = 2 k ( 2 k + 1 − 1 ) , 2 k + 1 − 1 是 素 数 n=2^k(2^{k+1}-1),2^{k+1}-1是素数 n=2k(2k+11),2k+11

如果 2 k + 1 − 1 2^{k+1}-1 2k+11是素数,则k+1本身必是素数,即 k + 1 = p k+1=p k+1=p。所以每个偶完全数形如 n = 2 p − 1 ( 2 p − 1 ) n=2^{p-1}(2^p-1) n=2p1(2p1)。其中 2 p − 1 2^p-1 2p1是梅森素数。这就完成了欧拉完全数定理的证明。

注意欧拉完全数定理给出了所有偶完全数的漂亮描述,但没有涉及有关奇完全数的任何东西。
奇完全数难题奇完全数是否存在没有人给出过证明。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值