预测技术现状分析

       预测解决了使用自动化方法来检测、诊断和分析物理系统性能退化的问题。在出现故障或不可接受的性能退化之前,计算达到不可接受的运行状态的剩余寿命。退化分析的主要作用是研究导致产品失效的物理特性或性能指标的演变。准确可靠的预测是工程系统CBM的关键,也是提高系统安全性、规划任务、安排维修、降低维修成本和停机时间的关键。尽管很难找到一种通用的预测方法进行准确预测,但服务于CBM的预测方法近年来引起了广泛关注。

       为支持决策和高可靠管理运行,当前已研究和开发出很多方法和技术,正逐步实现预防性维修,如图 2所示。

2形成预防性维修基础的技术步骤

       近年来,学术会议和学术期刊上涌现出大量的包括基于机器学习在内预测理论及其应用论文,其中所涵盖的算法如图 3所示。许多在其他领域成功应用的传统方法或新方法被引入故障预测领域。为了提高预测模型的性能,许多研究者将两种或两种以上的技术和方法结合起来形成混合模型。

3 预测算法分类

        如图 3所示的故障预测技术通常使用测量或推断的特征,以及数据驱动和/或基于模型的算法来预测未来某个时间系统的运行状态。由于系统固有的概率性或不确定性,预测可应用于由材料状态或功能损失为主导的失效模式。文献中将预测模型分为3类:基于模型的方法、数据驱动方法和混合方法,如图 4所示。

4 预测模型分类

1.  基于数据驱动的预测技术

       数据驱动的预测方法是以统计和学习技术为基础的,这些技术大多起源于模式识别理论。数据驱动方法可以分为两类:统计方法和人工智能方法。统计方法包括多元统计方法(例如,静态和动态主成分分析(PCA)、线性和二次判别法、偏最小二乘法、典型多样性分析和学习矢量量化(LVQ))、隐半马尔可夫模型(HSMM)和回归模型。目前大多数数据驱动的预测方法都采用了人工神经网络及其变形形式(如多项式神经网络(PNN)、动态小波神经网络(DWNN)、自组织特征映射(SOM)、多层感知器(MLP)神经网络等)。数据驱动模型通常是从收集的系统输入/输出数据开发出来的。这些模型可以处理各种数据类型,并能够发现基于规则的系统无法发现的数据中隐含的细微差别。

2.  基于模型的预测技术

       物理模型(也称为失效物理或行为模型)是使用物理定律(即第一性原理)建立的模型。物理模型意味着在宏观和微观层面上,需全面掌握系统在应力作用下的行。此外,它还假设这种行为可以准确的、解析地描述。物理模型通过求解由大量经验数据导出的确定方程或一组行为方程来估计部件/设备的剩余使用寿命。其中一些数据将被转换成普通的工程知识,而其他数据需要通过特定实验室试验或外场试验获取。通常,为特定系统推导物理模型需要识别一个或多个特定的系统参数(例如,精确的物理性质、腐蚀速率、方程常数)。

       行为模型通常使用一系列动态常微分方程或偏微分方程来描述,然后可以用拉格朗日或哈密顿动力学、应用于偏微分方程的近似方法、分布式模型和其他技术来求解。物理模型也可以使用状态空间方法(即无微分方程)进行描述,并相应地进行求解。

        一旦有了物理模型,实际过程中的传感器测量值就会与模型的输出进行比较。现实与模型之间的差异称为残差;较大的残差表示故障,而较小的残差发生在正常条件、噪声和建模误差下。阈值用于识别故障或残差的存在,这些故障或残差用作其他模型的输入。

        剩余使用寿命估计基于系统未来运行条件下的退化行为。为了构建失效物理模型,必须描述以下特征和相关的确定性水平:

  1. 一组潜在的初始失效模式;
  2. 典型工作范围内的运行过程;
  3. 特定工艺条件下的退化行为;
  4. 运行状态和退化行为之间的关系;
  5. 过程噪声和测量噪声。

       在许多情况下,物理模型的参数是概率随机变量,因此行为模型需要结合它们的统计分布,这就是为什么需要给出评估结果置信限的原因。毫无疑问,模型的数学形式和解算过程往往非常复杂,它们最终也必须能够分解为多个单独的故障机理(因为这是可以物理建模的)。此外,与故障发展相关(并建模)的外部可测参数必须可用于计算残差。已建立物理模型的故障机理包括:低周和高周疲劳、过应力失效、腐蚀和变形等。

       为了预测建模,元部件故障机理大致可分为两类。第一类属于过应力型故障,即作用于元部件上的载荷超过材料强度,例如:脆性断裂、塑性变形、屈服等。这种故障的影响是短期的,随着载荷的移除,故障影响也将消失。第二类是累积型故障.这类故障的特征是,当载荷消除时故障影响不会消失,而是对元部件产生不可逆的累积损伤,如疲劳、腐蚀、裂纹、磨损和蠕变。一旦超过特定损伤的限制,正常工作载荷将超过剩余强度,并会发生过应力失效。累积型失效模式的物理预测模型需要能够跟踪系统所有运行条件下的累积损伤过程及其退化速度。损伤因子分解法通常应用于跟踪不同强度水平下的载荷。另一方面,对于过应力故障,不仅需监测材料的当前状态和瞬时载荷,以确定其立即失效的风险,还应进行强度和荷载分布的随机性分析。

       系统级失效物理模型通常是独立的失效模型的组合,并添加了描述这些模型在系统内相互耦合的方程。比如,振动对多自由度动力学系统的影响就是一个显著的例子。理论上,这些更高层次的模型还可以描述失效模式引发或加剧其他失效模式。但是这些模型的解析描述通常更加复杂,即便使用有限元模型进行解算也较为困难。更实用的方法是通过将简化的行为方程与基于经验的模型(如前所述)相结合或利用数据融合方法来建立系统模型。

       理论上,行为模型也可以用来进行诊断/预测。然而,由于分析的复杂性,行为模型在进行预测分析时通常是不现实的。此外,经验表明,通常需要同时观测不同的参数来确定失效开始时刻以及正在进行中的性能退化。因此,在实践中,故障诊断和故障预测通常是分开进行的,预测行为模型仅在相关故障被识别到时才起作用。

       行为模型的主要优点是能够直接结合对失效物理机理的认知,这些失效物理机理在许多情况下是已经过了广泛和详尽的试验测试证明了的(例如Paris–Ergodan裂纹扩展定律)。随着对系统失效物理理解的深入,可以对模型进行调整以提高模型精度。因此,如果模型的可用性和充要条件得到满足,行为模型往往比其他类型的模型更加有效。此外,残差所描述的模型输出变化往往具有直接的物理意义,因此输出结果更易于理解。

       行为模型的显著缺点是,系统的行为必须从第一性原理出发进行建模;在有些情况下,这种建模是很难实现的,因为对相关运行条件下失效机理行为的理解并不充分。即使理解了失效行为,为模型分配适当的参数所需的大量准确可靠的多元数据也很难获得。与被建模的故障模式相关联的特定状态指示器也必须被识别,并不断地改进。行为建模所需的准备工作量也更大,因为必须使用RCM和/或FMEA等技术对要精确建模的重要故障模式进行分析。

       因此,失效物理模型倾向于在独立情况下使用,用于简单系统中易于理解的故障和/或具有已建立的诊断系统和预防性维护程序的用户使用。例如,裂纹扩展失效模式是最常用的预测行为模型。

3. 混合/融合预测技术

       在实际的预测过程中,各种特征参数的变化趋势是多样化的,很难用单一的预测方法进行预测。因此,采用混合预测方法进行预测成为必然选择。使用一种设计良好的基于条件的组合预测方法,将两种或两种以上的预测方法结合在一起进行数据采集,数据分析和建模具有以下优点:(1) 可以弥补个别方法的缺点,并有效利用所有预测方法的优点;(2) 降低计算复杂度;(3) 提高预测精度。

       人工神经网络通常与基于知识的技术相结合使用,如ES和FL.Brotherton等人将椭球基函数神经网络与规则抽取器相结合,并将其应用于燃气轮机预测中[7]。Garga等人介绍了一种混合推理方法,该方法将机械数据集成到领域知识简单表示的前馈神经网络中[8],Garga等人提出的神经模糊算法是神经网络和模糊推理系统的结合,它们结合了典型模糊推理系统的语言描述和受神经网络启发的学习过程。这些算法具有自适应性、鲁棒性和高度灵活性。

       Wang等人比较了递归神经网络(RNNs)和神经模糊(NF)推理系统预测故障损伤扩展趋势的结果[9]。通过比较发现,如果对NF系统进行适当的训练,无论在预测精度还是训练效率上都优于RNNs。Kothamasu和Huang提出了一种基于自适应学习Mamdani模糊模型的NF建模方法,用于系统诊断和预测[10]。一个能够在CBM开发过程中起到辅助决策的作用的鲁棒且清晰的建模系统需要强调系统的可理解性,使其能够有效地作为领域专家的决策辅助,并通过与用户的交互,适应一些常规的修改甚至是不断的改进。一旦调整规则,NF系统的可理解性通常会降低,因此在系统中引入Kullback-Leibler均值信息来解决问题,它可以评估和细化调整后的规则,使系统易于解释。

       由于GM(1, 1)善于平滑时间序列数据,而人工神经网络对非线性时间序列的预测能力强于其他方法,Dong等人设计了一种基于GM(1, 1)和BP神经网络相结合的多参数状态预测模型,用于预测电厂设备的状态[11]-[12]。充分利用运行数据、状态监测数据和运行统计数据,对设备状态进行预测,其结果比单一特征参数预测更为合理。

        还有一些其他的组合模式。Shetty等人将飞机辅助动力装置的降级过程建模为一组预测状态(健康向量),这些状态随着时间的推移不断演变[13],提出的多变量状态空间模型包括老化分布、部件相互作用以及由线路维护行动和/或突然故障引起的离散事件的影响。从数学上讲,该模型可以概括为一个连续演化的动态模型,由非高斯输入驱动,并根据系统中的离散事件进行切换。基于部分指定的分布框架,推导了非高斯模型的系统辨识和递推状态估计方法。Mohanty等人开发了一种用于飞机金属结构部件实时RUL估计的混合预测模型[14]。该预测框架结合了离线物理模型、离线数据驱动模型和在线系统辨识预测模型的信息,这些模型可以通过高斯过程显式表达(在贝叶斯框架下的数据驱动的方法)。高斯过程模型通过概率推断一个潜在的非线性函数来关联输入和输出,从而将输入空间投影到输出空间。对于离线预测,该预测框架利用影响疲劳裂纹扩展的参数对模型输入空间进行训练。对于在线预测的情况,模型输入空间利用压电传感器信号的特征来训练,而不是使用载荷参数进行训练,因为载荷参数在实际的飞行结构中很难测量。利用训练好的高斯过程模型,可以得到相应的未知裂纹长度或损伤状态的预测输出。

4. 预测技术在航空领域中的应用

       在工程领域中应用预测是非常困难的,因为工程中预测真正起到作用必须提前足够的时间准确地预测系统的剩余寿命,控制器才能做出反应,从而防止系统故障。在本节中,我们将展示一些预测在航空航天领域的初步应用。

       预测应用程序可以在线运行或者离线运行。在线运行时,无论是机上安装还是地面安装,也无论监控系统的运行时间如何,预测应用程序都可以实时或接近实时地工作。实时预测时,应用程序从数据采集系统获取在线数据以执行RUL估计,并对即将发生的故障发出警告,以允许系统重构和任务重新规划。离线预测系统使用机队规模的系统数据,并执行由于缺乏计算资源和大量耗时而无法在机上实时执行的深层数据挖掘过程。离线预测系统的结果可用于维修计划和后勤保障管理决策。

       一项美国专利开发了飞行器诊断和预测系统[15]。系统由飞行器维护计算机(VMC)、机载运行网络(VON)、传感器系统、飞机维护数据库,以及收发器组成。VMC执行诊断和预测功能,VON提供VMC和其他机载处理器之间通信,传感器系统通过VON向VMC提供机载子系统运行数据,飞机维护数据库向VMC提供维护信息。收发器用于与具有集中诊断和预测系统的地面基站通信,如图 5所示。

5 飞行器诊断与预测系统

当VMC诊断系统检测到异常时,将触发预测系统,根据机载数据库中的可用信息进行数据趋势分析。解算结果发送到飞机显示屏通知驾驶员即将发生的故障。相关故障预测的文件被发送到地面基站中的中央诊断和预测系统。如果VMC无法根据可用的机载数据预测即将发生的故障,它将向地面基站发送维护消息,基站使用机队规模的历史数据进行预测。中央诊断和预测系统的结果随后上传至机载VMC。

EMA是最重要的预测对象之一。EMA在新一代电传飞机和航天器在恶劣条件下的舵面控制中起主导作用[16][17],属于安全关键部件。准确监测、诊断和预测EMA的故障可以拯救飞行员生命,为此可以节省数百万美元。美国宇航局Ames诊断与预测小组与Impact、Moog、乔治亚理工学院、加州理工州立大学、俄勒冈州州立大学和美国陆军合作,为EMA开发了一个极有价值的PHM系统。所开发的系统可以在飞机上实时运行,以提供EMA的当前状态并预测EMA的后续运行情况,从而实现故障条件下的安全重构的目标。为了验证EMA预测效果,美国宇航局Ames诊断与预测小组研制了一套机载EMA健康管理试验台,并将其应用于实验室试验和UH-60黑鹰直升机的飞行试验中。在诊断系统捕捉到EMA异常后,根据故障模式、故障进程与故障阈值的交集,启动基于高斯过程回归的预测系统进行RUL估计。结果表明,EoL预测的误差小于10%。

航空发动机是一个需要健康监测和主动维护的安全关键系统。由于系统的复杂性,为发动机预测建立物理模型非常困难且代价高昂,因此人工神经网络成为了一种可选的预测方法。经过适当的训练,人工神经网络可以识别出系统故障和标识系统行为。人工神经网络还具有灵活的检测能力,但需要大量的训练数据,看起来像一个黑盒子。此外,数据挖掘规则提取工具也可以实现相同的功能,并提供比人工神经网络更深入的行为。

Intelligent Automation Corporation和ORINCON Corporation将人工神经网络与基于规则的技术相结合,开发了飞机在线预测系统并取得了良好的效果[18]。这种组合基于一种称为TREPAN的算法,如图 6所示。该算法的思想是利用DL-EBF神经网络来学习系统的正常状态、故障状态和故障发展阶段。使用DL-EBF的优点是,它可以更深入地了解系统动力学。规则提取模块通过查询对神经网络进行数据挖掘,生成用于趋势分析的规则。该系统不需要大量的数据进行训练,特别是在故障演化初期,从而具有良好的统计性能、发现新规则、新颖性检测和实时性。

6 TREPAN算法

太平洋西北国家实验室对燃气轮机AGT1500的嵌入式实时预测系统进行了可行性研究[19]。这项工作由美国陆军后勤综合署赞助,用于评估预测技术的投资回报率。该系统使用了25个原有设计传感器,并为系统增加了13个额外传感器。附加的数据采集系统用于传感器数据的采集和处理。微处理器用于数据分析和寿命预测,使用回归分析进行RUL估计。结果表明,预测系统的收益与其成本比例为11:1,证明了预测方法在这一领域的适用性。

5. 预测技术存在的挑战

目前预测技术存在的主要挑战包括:

  1. 不确定性管理;
  2. 基于预测输出的自主控制重构;
  3. 系统异质和稀疏数据整合;
  4. 预测系统功能确认和验证;
  5. 后预测推理。

除此之外,中长期预测、数据趋势正确性、多变的外部因素影响、全生命周期数据的可用性、离线算法评估、加速老化试验、实时算法开发、预测需求规范和预测技术标准也都是挑战。

本报告仅讨论以下主要挑战:不确定性管理、预测系统功能确认和验证、预测标准和后预测推理。

5.1 不确定性管理

预测是对故障未来发展的估计,在本质上是一个不确定的过程。预测中使用的载荷和环境条件在未来系统运行中往往无法准确估计,同时模型参数及系统设计参数对预测也施加了不确定性。这些参数的不确定性存在于从设计到运行,再到维护的全生命周期中。

系统设计和开发过程中的假设、装配和测试设备和工具、系统模型、系统输入、干扰、数据处理、传感器、状态估计方法、RUL估计方法、性能度量等多个方面的不完备都增加了预测的不确定性。Sankaraman S对故障预测和健康监测中不确定性量化和管理的现状进行了分析,将不确定性来源分为四大类[20]:

  1. 传感器噪声、增益和偏差、数据处理、滤波和估计技术导致的当前状态的不确定性。
  2. 由于负载、环境和运行条件而出现的未来运行状态的不确定性。
  3. 建模不确定性:来自预测过程中使用的各种模型,例如系统模型和故障模型。
  4. 预测方法的不确定性。

图 7显示了多种不确定性来源如何影响RUL估计。图 7(a)显示了系统失效判据的不确定导致外推损伤和失效阈值之间交叉点的移动,以及测量噪声导致多个损伤传播模型。图 7(b)显示了模型精度导致外推趋势参数的变化过程。模型的不精确性可以用趋势参数的概率密度函数(PDF)来表示,模型的不精确度可以用卡尔曼滤波或粒子滤波等方法外推到未来。

(a) 测量不确定的影响

(b) 模型及输入不确定性影响

7 多种不确定性来源对RUL估计的影响

预测中的不确定性因素无法完全消除,但是可以通过噪声建模、算法防止过拟合、模型训练以及使用混合预测技术对预测不确定性进行管理。通常可以使用准确度(Accuracy)及精度(Precision)来衡量剩余使用寿命预测的不确定性。

在实际应用中,RUL估计误差通常不是正态分布,有时估计误差甚至不属于已知的任何分布。当分布形式不是正态分布时,最好用中位数代替均值来表示估计值的位置,用四分位距代替方差来度量标准差。数据的可视化可以使用图 8所示的误差线和方框图来完成。

8 不同类型分布的参数描述

在文献[21]中,Saxena提出了一个定义良好且有效的概念用于合并各种不确定性。文中提出了一种误差界,该误差界不采用单点估计,而是通过计算估计的EoL与实际的EoL之间的差值来确定α边界,如图 9所示。这个α边界不一定是对称的,特别是在预测中,它更适用于早期预测。通过积分概率分布曲线下α-至α+的面积并将结果与预先设定的阈值β进行比较,可以知道预测不确定性是否在α边界内,称为β标准。参数β定义了不确定性与系统风险承受度之间的关系。。

9 不确定度概念

RUL估计中的不确定性度量可以帮助决策者在维修决策时考虑预测结果的置信度。基于这个原因,研究人员在RUL估计过程中研究的一个重要任务是不确定性传播问题。Sankaraman S提出了“最可能点”概念和一阶可靠性分析方法,将各种不确定性因素传播到RUL最终的估计中[22][23]。这些分析方法的计算成本不高,从而使其适用于在线应用。而且,这些方法的估计结果重复一致性好。

虽然将RUL估计问题作为一个不确定性传播任务来解决的思路具有极高的价值,但目前不确定性传播解算仅针对回归等一些解析数学模型开展,而忽略了预测中常用的人工智能方法的不确定性传播问题。

5.2预测系统功能确认和验证

预测过程功能确认和验证是非常必要的。在未充分保证其性能之前,预测系统无法完成部署。如果开发一个好的预测算法而不能量化其性能,那么所开发的预测算法在实际系统上将毫无用处。因此,在预测过程功能确认和验证之前,首先需要制定合理的预测性能评价指标。制定性能评价指标的重要性在于:

  1. 制定和评估预测系统设计需求规范。
  2. 发现预测系统的薄弱环节,从而改进预测效果。
  3. 同等条件下不同算法之间的性能比较。
  4. 确定预测中需要着重研究的区域。
  5. 确定投资回报率,由此决定是否部署预测系统。

从最初引入预测概念开始,人们就只关注预测算法的开发。最近,PHM领域开始关注预测指标的重要性。本报告第4节详细总结了预测指标,本节只介绍了基本的预测性能指标分类原则。预测性能指标可分为以下几类:

5.2.1 预测指标的功能性分类

预测指标的功能性分类被认为是最重要和使用最广泛的分类方式。基于功能性指标实现某些功能完成性的评估,如图 10所示。

10 预测性能指标的功能性分类

5.2.2 预测指标的终端用户需求分类

这类分类方法基于预测系统的客户需求。不同用户在审视预测系统优缺点时的角度有所不同,需要通过特定的指标来量化。该分类如表 1所示。

1 预测指标的终端用户需求分类

终端用户

目标

指标

项目管理者

预测系统的经济价值

成本效益指标,将预测性能与成本节约联系起来

工厂管理者

资源分配与任务规划

基于累积损伤模型的特定单元RUL估计的准确度和精度

系统操作员

在执行任务期间采取适当操作,并在出现任何意外情况时重新安排任务

基于性能退化模型的特定单元RUL估计的准确度和精度

维修人员

实施主动维护措施以提高系统的可靠性和可用性

基于累积损伤模型的RUL估计的准确度和精度

设计人员

根据用户需求设计和开发预测系统,并从性能评估指标中获取反馈,以改进系统的设计

基于可靠性的指标,用于评估对计算资源的设计需求

随着可用数据量的增加,预测算法的性能会不断提高。设备刚投入使用时进行的RUL预测结果显然要比设备马上失效时的RUL预测结果的置信度要低。预测的置信度应该随着设备使用时间的推移而变化,一个好的算法应该提前适当时间给出一个具有高置信度的预测结果。

考虑到算法性能随时间的变化,因此预测指标也应该是动态的。Saxena提出了四个动态指标来评估预测性能,并将时间尺度的影响考虑到性能评估中[21]。这四个预测性能指标度量了性能随时间的变化,并以瀑布模型的形式呈现。如果算法满足第一个指标,就可以进一步应用第二个指标,如果不满足,则不能应用第二个指标,如图 11所示。这些指标包括预测水平,α-λ性能、相对准确度和收敛性。

11 预测性能指标的瀑布式设计

5.3 预测标准

为了方便、快速、有效地开发和部署预测系统,需要一套完整的预测标准。标准不仅须对预测领域内的相关概念进行规范化,还须识别更值得关注的技术差距。

预测标准分为三类:术语与定义标准、预测系统开发标准,以及预测测度指标标准。

关于术语和定义的标准旨在消除使用不同预测术语时的歧义。这将有助于在阅读和讨论任何预测问题时清楚地理解各个术语的含义。ISO 13381-1[1] 和ISO-13372[24]介绍了预测中的一些术语和词汇。文献[21]的预测框架中给出了大量预测术语表(如RUL、UUT、EoL等),并给出了时间索引、故障检测时间、预测特征等术语的定义。

关于预测系统开发的标准旨在概括预测过程、预测系统内部的信息交换、预测系统的实现和预测系统的设计方法。由于预测是CBM的关键组成要素,因此在CBM系统开发中定义了预测系统开发的标准。

ISO-13374提供了CBM的一般框架。OSA-CBM使用了[25]中提出的框架,并介绍了实现该框架的标准方法。OSA-CBM通过定义数据类型和组件之间的信息流来定义如何实现每个CBM组件。OSA-CBM是用UML编写的,以简化软件工程师的工作。这种开放系统架构可以节约大量的开发成本,因为不需要从头开发每个CBM系统。相反,我们可以使用已经开发的标准组件实现CBM系统。此外,每个供应商都可以掌握CBM系统的特定部分,而不是开发整个CBM系统,从而有利于不同供应商之间的竞争与合作。

ISO-13381-1将预测过程与电子维修体系结构内的监控和决策过程相关联。根据[26]和ISO-13381-1中所做的工作,Voisin A提出了一种通用预测过程的形式化开发方法[27]。这种形式化开发方法基于五个步骤:

  1. 预测过程环境的形式化。通过定义预测进程和其他进程(如监视、诊断和决策支持)之间的关系来实现,同时它还定义了进程之间的连接和交互。
  2. 预测最终目的的形式化。定义了通用方法来计算预测的最终输出,即RUL。它是通过定义不同的判据来实现的:第一个判据是组件的性能阈值(该值通常与EoL相关);第二个判据是整个系统性能的功能阈值,即预测最终目的的形式化定义了系统安全有效运行的极限。
  3. 预测功能分解的形式化。对于RUL计算,预测过程分为四个子过程:其中三个子过程依次计算RUL(“状态和性能初始化”、“推演”和“计算RUL”),第四个子过程(“引导预测”)协调其他三个子过程的工作。
  4. 完成预测任务所需的子过程协调的形式化。通过创建预测序列图来实现。
  5. 预测对象和数据的形式化。基于OSA-CBM标准[26],使用UML类图表示法创建预测数据和对象的类图。

关于预测测度指标的标准允许一种标准化的方法来评估、验证和比较不同的预测算法。在确认和验证部分已经讨论了预测度量指标,此处不再赘述。

5.4 后预测推理

预测系统提供一部分信息(具有相应置信水平的RUL),决策者使用该信息与其他信息一起对系统维护和运行做出适当的决策,以提高系统的可靠性、安全性和可用性,并降低全生命周期成本。也就是说,拥有有价值的信息很重要,但正确有效地使用这些有价值的信息更为重要。

后预测推理是一个挑战,因为它需要开发一个综合信息系统,将操作、维护、后勤、决策支持和决策联系起来,使每个用户都能从其他用户拥有的信息中获益,而不会对系统造成任何干扰。

ISO-13381-1定义了预测信息的实际处理方法。它确定了系统故障前剩余寿命的报警点,允许采取的补偿措施,以将系统功能从故障中恢复出来。另一个定义点是停机极限,当系统达到该极限时,系统在故障前关闭。停机极限值通常小于系统的故障阈值。

ISO-13381-1中定义的极限值并未显示预测后推理的全貌。Iyer N开发了一个决策支持系统,该系统使用可靠预测系统的信息,并向决策者提供不同的评估决策,以增强机队的后勤保障[28]。来自OBPHM的信息在PDSM中处理。PDSM由IP和MODSS两个模块组成。IP模块处理传入的信息并检查其一致性,处理不确定性,并聚合所有这些信息,以便MODSS模块使用。MODSS模块包含两个子模块OpSIM模块和EMOO模块。MODSS模块提供不同等级的决策并评估其对操作的影响。MODSS的输出在HMI上呈现给用户。

越来越多的基于预测信息的自动化决策支持系统的实现需要增加预测系统的效益,提高其适用性和工程界的接受度。

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值