DailyChallenge
209. 长度最小的子数组
20200628
难度:中等
题目描述
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的连续子数组,并返回其长度。如果不存在符合条件的连续子数组,返回 0。
示例:
输入: s = 7, nums = [2,3,1,2,4,3]
输出: 2
解释: 子数组 [4,3] 是该条件下的长度最小的连续子数组。
进阶:
如果你已经完成了O(n) 时间复杂度的解法, 请尝试 O(n log n) 时间复杂度的解法。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-size-subarray-sum
Solution
- 双指针
class Solution {
public int minSubArrayLen(int s, int[] nums) {
if(nums == null || nums.length == 0) return 0;
int i = 0;
int j = 0;
int sum = nums[0];
int ans = Integer.MAX_VALUE;
while(i <= j && j < nums.length){
if(sum < s){
j++;
if(j < nums.length) sum += nums[j];
}else{
ans = Math.min(ans, j-i+1);
sum -= nums[i];
i++;
}
}
if(i == 0 && sum < s) return 0;
return ans;
}
}
复杂度分析
-
时间复杂度:O(n)。
-
空间复杂度:O(1)。
- 前缀和+二分
class Solution {
public int minSubArrayLen(int s, int[] nums) {
int n = nums.length;
if (n == 0) {
return 0;
}
if(n == 1 && nums[0] >= s) return 1;
int ans = Integer.MAX_VALUE;
int[] sums = new int[n + 1];//存前缀和
for(int i = 1; i < n+1; i++){
sums[i] = sums[i-1] + nums[i-1];
}
//找sums[bound]- sums[i-1] >= s
for(int i = 1; i <= n; i++){
int target = s + sums[i-1];
//二分在sums中找第一个>=target的元素
int l = i;
int r = n;
while(l < r){
int mid = l + (r - l) / 2;
if(sums[mid] < target){
l = mid + 1;
}else{
r = mid;
}
}
//判断是否找到了
if(sums[l] >= target){
ans = Math.min(ans, l-i+1);
}
}
return ans == Integer.MAX_VALUE ? 0 : ans;
}
}
复杂度分析
- 时间复杂度:O(nlogn)。
- 空间复杂度:O(n)。
Tips:
Java中有现成的库和函数来实现这里二分查找:大于等于target的第一个位置。
int bound = Arrays.binarySearch(sums, target);
我的公众号:GitKid
暂时每日分享LeetCode,我在不断学习的过程中,公众号也在不断充实,欢迎大家扫码关注。
TODO:《剑指offer》系列