BP神经网络误差如何理解
谷歌人工智能写作项目:神经网络伪原创
BP神经网络在线学习的误差计算方法
标准BP算法中,每输入一个样本,都要回传误差并调整权值,这种对每个样本轮训的方法称为“单样本训练”写作猫。
由于单样本训练遵循的是只顾眼前的“本位主义”原则,只针对每个样本产生的误差进行调整,难免顾此失彼,使训练次数增加,导致收敛速度过慢。
因此,有另外一种方法,就是在所有样本输入之后,计算网络的总误差,再根据总误差调整权值,这种累积误差的批处理方式称为“批训练”或“周期训练”。在样本数较多时,批训练比单样本训练的收敛速度更快。
bp神经网络的问题,大家帮忙解答下!! 这图该怎么分析,还有训练误差和测试误差怎么看呢
你的图不大对吧?应该有三条曲线显示才对,分别代表训练,验证,测试误差,你现在只有训练误差的。
performance is 0.00306表示你的训练误差达到了0.00306,goal is 0.01表示你设置的目标误差是0.01.。
bp神经网络隐含层的误差是如何得到的?
1、神经网络算法隐含层的选取 1.1 构造法首先运用三种确定隐含层层数的方法得到三个隐含层层数,找到最小值和最大值,然后从最小值开