bp神经网络怎么看结果,bp神经网络结果不一样

本文深入探讨BP神经网络的误差理解,包括训练误差和测试误差的分析,以及在线学习与批训练的误差计算方法。同时,解释了隐含层误差的获取,权值调整和误差反传过程。并讨论了如何在MATLAB中评估预测精度及误差目标的选择,以优化网络性能。
摘要由CSDN通过智能技术生成

BP神经网络误差如何理解

谷歌人工智能写作项目:神经网络伪原创

BP神经网络在线学习的误差计算方法

标准BP算法中,每输入一个样本,都要回传误差并调整权值,这种对每个样本轮训的方法称为“单样本训练”写作猫

由于单样本训练遵循的是只顾眼前的“本位主义”原则,只针对每个样本产生的误差进行调整,难免顾此失彼,使训练次数增加,导致收敛速度过慢。

因此,有另外一种方法,就是在所有样本输入之后,计算网络的总误差,再根据总误差调整权值,这种累积误差的批处理方式称为“批训练”或“周期训练”。在样本数较多时,批训练比单样本训练的收敛速度更快。

bp神经网络的问题,大家帮忙解答下!! 这图该怎么分析,还有训练误差和测试误差怎么看呢

你的图不大对吧?应该有三条曲线显示才对,分别代表训练,验证,测试误差,你现在只有训练误差的。

performance is 0.00306表示你的训练误差达到了0.00306,goal is 0.01表示你设置的目标误差是0.01.。

bp神经网络隐含层的误差是如何得到的?

1、神经网络算法隐含层的选取 1.1 构造法首先运用三种确定隐含层层数的方法得到三个隐含层层数,找到最小值和最大值,然后从最小值开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值