weight decay 权值衰减

原文地址~::点我 在机器学习中,常常会出现overfitting,网络权值越大往往overfitting的程度越高,因此,为了避免出现overfitting,会给误差函数添加一个惩罚项,常...
  • wadqse123
  • wadqse123
  • 2015-03-26 20:03:36
  • 7818

正则化方法:L1和L2 regularization、数据集扩增、dropout

本文是《Neural networks and deep learning》概览 中第三章的一部分,讲机器学习/深度学习算法中常用的正则化方法。(本文会不断补充)正则化方法:防止过拟合,提高泛化能力在...
  • u012162613
  • u012162613
  • 2015-03-14 18:12:20
  • 56392

神经网络和深度学习-学习总结

1. 简介     神经网络和深度学习是由Michael Nielsen所写,其特色是:兼顾理论和实战,是一本供初学者深入理解Deep Learning的好书。 2. 使用神经网络识别手写数字...
  • MyArrow
  • MyArrow
  • 2016-05-05 14:19:14
  • 24506

卷积神经网络(四):学习率、权重衰减、动量

学习率、权重衰减、动量被称为超参数,因为他们不是由网络训练而得到的参数 权重衰减 L2正则化就是在代价函数后面再加上一个正则化项: C0代表原始的代价函数,后面那一项就是L2正则化项,λ...
  • Fire_Light_
  • Fire_Light_
  • 2018-03-14 16:29:07
  • 244

Tensorflow 权重衰减的使用

在 tf.get_variable 这个函数中有一个命名参数为 regularizer,顾名思义,这个参数可用于正则化。在 Tensorflow 官网中,regularizer 的描述如下:get_v...
  • u010185894
  • u010185894
  • 2017-05-03 00:02:20
  • 552

Caffe学习笔记(七)—— solver参数说明及利用自己的数据集对权值微调

本文主要介绍:在进行网络训练和权值微调过程中,需要对solver中的参数进行设置,本文主要介绍solver中的参数设置,以及如何利用自己的数据集,对权值进行微调。 1. solver参数设置 ne...
  • hong__fang
  • hong__fang
  • 2016-09-04 17:21:23
  • 3581

权重衰减weight decay实验

  • shirleycyy
  • shirleycyy
  • 2018-04-15 11:02:50
  • 45

优化算法-4:学习率衰减

本文来自于网易云课堂 学习率衰减 加快学习的一个办法就是随时间慢慢减少学习率,我们称之为学习率衰减。慢慢减少学习率的原因在于,在训练的初期,你可以承受较大的步伐,但是开始收敛的时候,小的学习率...
  • u010132497
  • u010132497
  • 2018-03-29 17:21:33
  • 39

learning rate 和weight decay

首先,假设我们有loss function为 E(w)E(\mathbf{w})梯度下降告诉我们在 EE的最快速下降的方向修改权值: wi←wi−η∂E∂wi,\begin{equation}...
  • laoxuan2011
  • laoxuan2011
  • 2016-10-08 10:28:57
  • 1168

Caffe中learning rate 和 weight decay 的理解

Caffe中learning rate 和 weight decay 的理解 在caffe.proto中 对caffe网络中出现的各项参数做了详细的解释。 1.关于learning rate   op...
  • u010025211
  • u010025211
  • 2015-11-26 14:59:47
  • 22405
收藏助手
不良信息举报
您举报文章:权重衰减weight decay实验
举报原因:
原因补充:

(最多只允许输入30个字)