视频语义分割—降低视频冗余计算量deep feature flow

本文介绍了Deep Feature Flow在视频识别中的应用,通过选取关键帧并计算帧间流来减少深度特征计算成本。该方法能有效降低视频处理的计算量,提高效率。实验结果显示,该技术在亚马逊MXnet框架下取得良好效果,尤其适用于短视频级别的目标检测。
摘要由CSDN通过智能技术生成

deep feature flow for video recognition 深度特征流
论文:https://arxiv.org/pdf/1611.07715.pdf
项目地址: Deep-Feature-Flow

出发点是在视频中的深度特征的帧间差异比较小,而对于每一帧获取其深度特征的时间和计算的成本十分大,考虑将前特征跨越到当前帧。
1 选取一个Key frame(计算关键帧通过特征提取子网络N-feat获取的深度特征)
2 对于current frame(当前帧的深度特征)计算与key frame之间的F(Flow)
3 用F将关键帧在识别子网络N-task的结果传播至当前帧得到结果,并反向传播loss
【关键帧】关键帧的固定选取,每隔K个帧选取一帧作为Key frame
在这里插入图片描述
算法流程
在这里插入图片描述
Result——亚马逊MXnet框架
在这里插入图片描述
目标检测效果(个人认为适用于短视频级别&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值