deep feature flow for video recognition 深度特征流
论文:https://arxiv.org/pdf/1611.07715.pdf
项目地址: Deep-Feature-Flow
出发点是在视频中的深度特征的帧间差异比较小,而对于每一帧获取其深度特征的时间和计算的成本十分大,考虑将前特征跨越到当前帧。
1 选取一个Key frame(计算关键帧通过特征提取子网络N-feat获取的深度特征)
2 对于current frame(当前帧的深度特征)计算与key frame之间的F(Flow)
3 用F将关键帧在识别子网络N-task的结果传播至当前帧得到结果,并反向传播loss
【关键帧】关键帧的固定选取,每隔K个帧选取一帧作为Key frame
算法流程
Result——亚马逊MXnet框架
目标检测效果(个人认为适用于短视频级别&