基于机器学习的线性回归代码

用的是机器学习的LinearRegression,使用了numpy工具,不是tensorflow

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression


def f1():
    # 随机数据产生
    np.random.seed(28)
    """
    产生N条数据,每条数据有一个特征属性,目标属性和特征属性之间的关系为线性关系
    """
    N = 100
    x = np.linspace(0, 6, N) + np.random.normal(0, 2.0, N)
    # 均值为0,标准差为2.0的高斯分布
    y = 14 * x + 7 + np.random.normal(0, 5.0, N)
    x.shape = -1, 1
    y.shape = -1, 1
    print((np.shape(x), np.shape(y)))  # ((100, 1), (100, 1))

    # 模型构建
    algo = LinearRegression()
    algo.fit(x, y)
    predict = algo.predict(x)

    # # 可视化
    plt.plot(x, y, 'ro')
    plt.plot(x, predict, 'g-')
    plt.show()
    print(x)
    print(y)


def f2():
    # 随机数据产生
    np.random.seed(28)
    """
    产生N条数据,每条数据有dim个特征属性,目标属性和特征属性之间的关系为线性关系
    """
    N = 100
    dim = 3
    x = np.random.uniform(low=-10, high=10, size=(N, dim))
    y = np.dot(x, [[5], [-6], [1.5]]) + 12 + np.random.normal(0, 5.0, (N, 1))
    x.shape = -1, dim
    y.shape = -1, 1
    print((np.shape(x), np.shape(y)))

    # 模型构建
    algo = LinearRegression()
    algo.fit(x, y)
    predict = algo.predict(x)

    # # 可视化
    # plt.plot(x, y, 'ro')
    # plt.plot(x, predict, 'g-')
    # plt.show()


if __name__ == '__main__':
    f1()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值