ChatGPT 速通手册——连续提问和重新生成的作用

文章介绍了ChatGPT如何利用Transformer和LSTM捕捉上下文进行连续对话,并通过提示学习、上下文学习和思维链提高交互质量。同时,ChatGPT能提供不同版本的回答,这归因于其神经网络结构、训练过程的随机性和可调整的参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

连续提问和重新生成的作用

和 ChatGPT 聊天,也是有套路的。我们把给 ChatGPT 输入的问题文本,叫 Prompt,提示词。实际上,传统搜索引擎也有比较相类似的功能。

在 Prompt Learning 提示学习之后,又总结出一种更好的聊天套路,叫 In-Context Learning 上下文学习。采用教学生做题的方案,先主动提供几个例题,然后出题让算法作答。

再之后,又有更新的聊天套路,叫 Chain of Thought 思维链。不光是给学生例题,还把解题步骤给他写出来,这样他学习成绩就更好了——按照研究人员的说法:只有当模型参数大于 100B 的时候,思维链的威力才能发挥出来。可以说是大语言模型的专属套路了。

说回ChatGPT,它使用的是基于Transformer 的自回归语言模型,这种模型采用了自注意力机制(Self-Attention Mechanism),它可以让机器理解和捕捉对话的上下文,进而实现上下文连续对话,ChatGPT还采用了LSTM长短期记忆模型,让ChatGPT准确地捕捉对话的上下文,从而实现更好的上下文连续对话能力。就好像让ChatGPT在对话的海洋中不断地吸收成长,它对于对话的处理也就随之越来越棒!

连续提问

对于ChatGPT来说,突出的就是一个chat--聊天,聊天就是有问有答,是双方的对话。当我们围绕着一个话题进行讨论或者交流的时候,ChatGPT会记住前面已经发生过的对话内容,并会结合之前的内容生成新的问题的答案,在我们看来这就好像在和ChatGPT聊天一样。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云哲-吉吉2021

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值