连续提问和重新生成的作用
和 ChatGPT 聊天,也是有套路的。我们把给 ChatGPT 输入的问题文本,叫 Prompt,提示词。实际上,传统搜索引擎也有比较相类似的功能。
在 Prompt Learning 提示学习之后,又总结出一种更好的聊天套路,叫 In-Context Learning 上下文学习。采用教学生做题的方案,先主动提供几个例题,然后出题让算法作答。
再之后,又有更新的聊天套路,叫 Chain of Thought 思维链。不光是给学生例题,还把解题步骤给他写出来,这样他学习成绩就更好了——按照研究人员的说法:只有当模型参数大于 100B 的时候,思维链的威力才能发挥出来。可以说是大语言模型的专属套路了。
说回ChatGPT,它使用的是基于Transformer
的自回归语言模型,这种模型采用了自注意力机制(Self-Attention Mechanism),它可以让机器理解和捕捉对话的上下文,进而实现上下文连续对话,ChatGPT还采用了LSTM
长短期记忆模型,让ChatGPT准确地捕捉对话的上下文,从而实现更好的上下文连续对话能力。就好像让ChatGPT在对话的海洋中不断地吸收成长,它对于对话的处理也就随之越来越棒!
连续提问
对于ChatGPT来说,突出的就是一个chat
--聊天,聊天就是有问有答,是双方的对话。当我们围绕着一个话题进行讨论或者交流的时候,ChatGPT会记住前面已经发生过的对话内容,并会结合之前的内容生成新的问题的答案,在我们看来这就好像在和ChatGPT聊天一样。