题目
已知 f ( 0 ) = f ′ ( 0 ) = 0 , f ′ ′ ( 0 ) ≠ 0 , 求 lim x → 0 x f ( x ) ∫ 0 x f ( u ) d u + x f ( x ) f(0)=f'(0)=0,f''(0)≠0,求\lim_{x \rightarrow0}\frac{xf(x)}{\int_{0}^{x}f(u)du+xf(x)} f(0)=f′(0)=0,f′′(0)=0,求limx→0∫0xf(u)du+xf(x)xf(x)
先给出答案:answer=3/4
解答
lim x → 0 x f ( x ) ∫ 0 x f ( u ) d u + x f ( x ) = lim x → 0 f ( x ) + x f ′ ( x ) 2 f ( x ) + x f ′ ( x ) ( 洛 必 达 ) = lim x → 0 f ( x ) x 2 + f ′ ( x ) x 2 f ( x ) x 2 + f ′ ( x ) x ( 同 ➗ x 2 ) = lim x → 0 f ( x ) x 2 + lim x → 0 f ′ ( x ) x 2 lim x → 0 f ( x ) x 2 + lim x → 0 f ′ ( x ) x ( 极 限 存 在 , 拆 开 ) = f ′ ′ ( 0 ) 2 + f ′ ′ ( 0 ) f ′ ′ ( 0 ) + f ′ ′ ( 0 ) = 3 4 ( 导 数 定 义 ) \lim_{x \rightarrow0}\frac{xf(x)}{\int_{0}^{x}f(u)du+xf(x)}= \lim_{x \rightarrow0}\frac{f(x)+xf'(x)}{2f(x)+xf'(x)} (洛必达) \\= \lim_{x \rightarrow0}\frac{\frac{f(x)}{x^2}+\frac{f'(x)}{x}}{2\frac{f(x)}{x^2}+\frac{f'(x)}{x}} (同➗x^2) \\= \frac{\lim_{x \to 0}\frac{f(x)}{x^2}+\lim_{x \to 0}\frac{f'(x)}{x}}{2\lim_{x \to 0}\frac{f(x)}{x^2}+\lim_{x \to 0}\frac{f'(x)}{x}} (极限存在,拆开)\\= \frac{\frac{f''(0)}{2}+{f''(0)}}{{f''(0)}+{f''(0)}}=\frac{3}{4}(导数定义) x→0lim∫0xf(u)du+xf(x)xf(x)=x→0lim2f(x)+xf′(x)f(x)+xf′(x)(洛必达)=x→0lim2x2f(x)+xf′(x)x2f(x)+xf′(x)(同➗x2)=2limx→0x2f(x)+limx→0xf′(x)limx→0x2f(x)+limx→0xf′(x)(极限存在,拆开)=f′′(0)+f′′(0)2f′′(0)+f′′(0)=43(导数定义)
本题要点
判断极限的可加性和导数的定义
极限的可加性指的是
如果2个极限分别存在,即若
lim
x
→
0
f
(
x
)
=
A
,
\lim_{x\rightarrow0}f(x)=A,
limx→0f(x)=A,
lim
x
→
0
g
(
x
)
=
B
,
\lim_{x\rightarrow0}g(x)=B,
limx→0g(x)=B,则
lim
x
→
0
[
f
(
x
)
±
g
(
x
)
]
=
lim
x
→
0
f
(
x
)
±
lim
x
→
0
g
(
x
)
=
A
±
B
\lim_{x\rightarrow0}[f(x)±g(x)]=\lim_{x\rightarrow0}f(x)±\lim_{x\rightarrow0}g(x)=A±B
limx→0[f(x)±g(x)]=limx→0f(x)±limx→0g(x)=A±B
对于本题的解答,极限为什么可以拆开呢? 因为f(x) 积分一次幂次上升一次,和xf(x)的幂次是一样的。如果原极限存在,则必然分开的极限也存在。同样地,求导之后,分子和分母的幂次还是相同的,可以假定极限存在。若求不出来,则假定不成立,即极限不能拆开。在计算的过程中,我们发现假定是正确的。
思考
看似题目连连续、可导的条件都没有告诉,只告诉了x=0这一点的情况,实际上,我们翻看导数的定义:
定义:设函数y=f(x)在点 x 0 x_0 x0的某个邻域内有定义,当自变量x在 x 0 x_0 x0处取得增量 Δ x \Delta x Δx(点 Δ x + x 0 \Delta x+x_0 Δx+x0仍然在该邻域内 ) 时,相应地,因变量取得增量 Δ y = f ( Δ x + x 0 ) − f ( x 0 ) \Delta y=f(\Delta x+x_0)-f(x_0) Δy=f(Δx+x0)−f(x0); 如果 Δ y \Delta y Δy和 Δ x \Delta x Δx之比当 Δ x → 0 \Delta x \rightarrow0 Δx→0时的极限存在,那么称函数y=f(x)在点 x 0 x_0 x0处可导,并称这个极限为函数y=f(x)在点 x 0 x_0 x0处的导数,记为 f ′ ( x 0 ) f'(x_0) f′(x0)
导数定义的第一句话便告诉我们:如果 f ′ ( 0 ) f'(0) f′(0)存在,那么必然在x=0的小邻域内函数f(x)有定义,同样地,如果 f ′ ′ ( 0 ) f''(0) f′′(0)存在,那么必然在x=0的小邻域内函数 f ′ ( x ) f'(x) f′(x)有定义。
并且由函数可导性与连续性的关系
如果函数y=f(x)在x处可导,那么函数在该点必连续;如果一个函数在某点连续却不一定在该点可导。
回到本题,由于 f ′ ( 0 ) = 0 f'(0)=0 f′(0)=0,我们可以知道,y=f(x)在x=0处连续;由于 f ′ ′ ( 0 ) ≠ 0 f''(0)≠0 f′′(0)=0,我们可以知道, f ′ ( x ) f'(x) f′(x)在x=0处连续。但是,关于 f ′ ′ ( x ) f''(x) f′′(x)的连续性我们是不得而知的,而且 f ′ ′ ′ ( 0 ) f'''(0) f′′′(0)是否存在我们也是不知道的,因为我们不知道二阶导数 f ′ ′ ( x ) f''(x) f′′(x)在x=0的邻域内是否有定义,如果没有定义,那么 f ′ ′ ′ ( 0 ) f'''(0) f′′′(0)不存在。