方差(Variance)和协方差(Covariance):统计中的“兄弟”指标

方差与协方差:统计中的“兄弟”指标

在统计学中,方差和协方差是两个核心概念,用来描述数据的分散性和变量间的关系。你可能听说过“方差衡量离散程度,协方差看相关性”,但它们到底有什么区别,又有哪些联系?今天我们就来聊聊这两个“兄弟”指标,从定义到公式,再到多变量场景,带你全面了解它们的奥秘。


什么是方差?

方差(Variance)是衡量单个随机变量离散程度(dispersion)的指标,表示数据点偏离其均值的平均平方距离。简单来说,它告诉你数据的“波动”有多大。

数学定义

对于一个随机变量 ( X X X ),其均值(期望)为 ( E [ X ] = μ E[X] = \mu E[X]=μ ),方差定义为:

Var ( X ) = E [ ( X − μ ) 2 ] \text{Var}(X) = E[(X - \mu)^2] Var(X)=E[(Xμ)2]

展开期望:

Var ( X ) = E [ X 2 − 2 X μ + μ 2 ] = E [ X 2 ] − 2 μ E [ X ] + μ 2 = E [ X 2 ] − μ 2 \text{Var}(X) = E[X^2 - 2X\mu + \mu^2] = E[X^2] - 2\mu E[X] + \mu^2 = E[X^2] - \mu^2 Var(X)=E[X22Xμ+μ2]=E[X2]2μE[X]+μ2=E[X2]μ2

所以:

Var ( X ) = E [ X 2 ] − ( E [ X ] ) 2 \text{Var}(X) = E[X^2] - (E[X])^2 Var(X)=E[X2](E[X])2

通俗例子

想象你在掷骰子,( X X X ) 是点数(1到6),均值 ( μ = 3.5 \mu = 3.5 μ=3.5 )。方差计算每个点数偏离3.5的平方平均:

  • 数据波动小(如1和2),方差小。
  • 数据波动大(如1和6),方差大。

什么是协方差?

协方差(Covariance)衡量两个随机变量 ( X ) 和 ( Y ) 如何一起变化,表示它们偏离各自均值的联合波动。简单来说,它告诉你两者是“同向”还是“反向”移动。

数学定义

对于两个随机变量 ( X X X ) 和 ( Y Y Y ),均值分别为 ( E [ X ] = μ X E[X] = \mu_X E[X]=μX )、( E [ Y ] = μ Y E[Y] = \mu_Y E[Y]=μY ),协方差定义为:

Cov ( X , Y ) = E [ ( X − μ X ) ( Y − μ Y ) ] \text{Cov}(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] Cov(X,Y)=E[(XμX)(YμY)]

展开期望:

Cov ( X , Y ) = E [ X Y − X μ Y − Y μ X + μ X μ Y ] \text{Cov}(X, Y) = E[XY - X\mu_Y - Y\mu_X + \mu_X\mu_Y] Cov(X,Y)=E[XYXμYYμX+μXμY]

= E [ X Y ] − μ Y E [ X ] − μ X E [ Y ] + μ X μ Y = E [ X Y ] − μ X μ Y = E[XY] - \mu_Y E[X] - \mu_X E[Y] + \mu_X\mu_Y = E[XY] - \mu_X\mu_Y =E[XY]μYE[X]μXE[Y]+μXμY=E[XY]μXμY

所以:

Cov ( X , Y ) = E [ X Y ] − E [ X ] E [ Y ] \text{Cov}(X, Y) = E[XY] - E[X]E[Y] Cov(X,Y)=E[XY]E[X]E[Y]

  • 正协方差:( X X X ) 增加时 ( Y Y Y ) 也增加。
  • 负协方差:( X X X ) 增加时 ( Y Y Y ) 减少。
  • 零协方差:( X X X ) 和 ( Y Y Y ) 无线性关联。

通俗例子

还是掷骰子,( X X X ) 是第一次点数,( Y Y Y ) 是第二次点数。两者的协方差可能是零(因为独立)。但如果 ( Y = X Y = X Y=X )(每次点数相同),协方差就等于方差。


方差与协方差的联系

方差和协方差是一对“兄弟”,它们的联系非常直接:

1. 方差是协方差的特殊情况

如果 ( X = Y X = Y X=Y )(即同一个变量),协方差变成:

Cov ( X , X ) = E [ ( X − μ X ) ( X − μ X ) ] = E [ ( X − μ X ) 2 ] = Var ( X ) \text{Cov}(X, X) = E[(X - \mu_X)(X - \mu_X)] = E[(X - \mu_X)^2] = \text{Var}(X) Cov(X,X)=E[(XμX)(XμX)]=E[(XμX)2]=Var(X)

所以,方差是变量与自身的协方差。这说明方差是协方差的一种特定形式。

2. 数学结构相似

  • 方差:( Var ( X ) = E [ ( X − μ ) 2 ] \text{Var}(X) = E[(X - \mu)^2] Var(X)=E[(Xμ)2] )
  • 协方差:( Cov ( X , Y ) = E [ ( X − μ X ) ( Y − μ Y ) ] \text{Cov}(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] Cov(X,Y)=E[(XμX)(YμY)] )

两者的核心都是“偏离均值的期望”,只是方差看单个变量,协方差看两个变量的联合。


方差与协方差的区别

尽管有联系,方差和协方差在定义和用途上有明显差异:

1. 对象不同

  • 方差:描述单个变量的离散程度。
  • 协方差:描述两个变量的相互关系。

2. 输出含义

  • 方差:总是非负(( Var ( X ) ≥ 0 \text{Var}(X) \geq 0 Var(X)0 )),单位是变量平方的单位(如 ( °C 2 \text{°C}^2 °C2 ))。
  • 协方差:可以是正、负或零,单位是两个变量单位的乘积(如 ( °C ⋅ mm \text{°C} \cdot \text{mm} °Cmm ))。

3. 可解释性

  • 方差:直接衡量波动大小,数值越大,数据越分散。
  • 协方差:只反映方向(正负),大小受变量尺度影响,难以直观比较。

多变量情况:协方差矩阵

当涉及多个变量时,方差和协方差的概念扩展到矩阵形式,称为协方差矩阵(Covariance Matrix)。

定义

对于一个 ( n n n ) 维随机向量 ( X = [ X 1 , X 2 , … , X n ] T X = [X_1, X_2, \dots, X_n]^T X=[X1,X2,,Xn]T ),均值为 ( μ = E [ X ] \mu = E[X] μ=E[X] ),协方差矩阵 ( Σ \Sigma Σ ) 是:

Σ = E [ ( X − μ ) ( X − μ ) T ] \Sigma = E[(X - \mu)(X - \mu)^T] Σ=E[(Xμ)(Xμ)T]

矩阵元素为:

Σ i j = Cov ( X i , X j ) \Sigma_{ij} = \text{Cov}(X_i, X_j) Σij=Cov(Xi,Xj)

  • 对角元素:( Σ i i = Var ( X i ) \Sigma_{ii} = \text{Var}(X_i) Σii=Var(Xi) ),是每个变量的方差。
  • 非对角元素:( Σ i j = Cov ( X i , X j ) \Sigma_{ij} = \text{Cov}(X_i, X_j) Σij=Cov(Xi,Xj) )(( i ≠ j i \neq j i=j )),是变量间的协方差。
例子

假设 ( X = [ X 1 , X 2 ] T X = [X_1, X_2]^T X=[X1,X2]T ) 表示身高和体重:

Σ = [ Var ( X 1 ) Cov ( X 1 , X 2 ) Cov ( X 2 , X 1 ) Var ( X 2 ) ] \Sigma = \begin{bmatrix} \text{Var}(X_1) & \text{Cov}(X_1, X_2) \\ \text{Cov}(X_2, X_1) & \text{Var}(X_2) \end{bmatrix} Σ=[Var(X1)Cov(X2,X1)Cov(X1,X2)Var(X2)]

  • ( Var ( X 1 ) \text{Var}(X_1) Var(X1) ):身高的方差。
  • ( Cov ( X 1 , X 2 ) \text{Cov}(X_1, X_2) Cov(X1,X2) ):身高和体重的协方差(对称矩阵,( Cov ( X 1 , X 2 ) = Cov ( X 2 , X 1 ) \text{Cov}(X_1, X_2) = \text{Cov}(X_2, X_1) Cov(X1,X2)=Cov(X2,X1) ))。

实际应用

1. 数据分析

  • 方差:评估单个变量的稳定性。比如,方差大的考试成绩说明学生水平差异大。
  • 协方差:探索变量关系。比如,身高和体重的正协方差提示两者相关。

2. 参数估计

在统计中,协方差矩阵(如 ( I ( θ ) − 1 I(\theta)^{-1} I(θ)1 ))给出估计量的精度,而方差是其对角元素。例如,Cramér-Rao界:

Cov ( θ ^ ) ≥ I ( θ ) − 1 \text{Cov}(\hat{\theta}) \geq I(\theta)^{-1} Cov(θ^)I(θ)1

可以参考笔者的另一篇博客:Cramér-Rao界:参数估计精度的“理论底线”

3. 机器学习

  • PCA(主成分分析):协方差矩阵的特征分解找到数据的主方向,方差决定保留哪些维度。
  • 回归模型:协方差分析变量间的多重共线性。

总结

方差和协方差是统计学中的“兄弟”指标:方差是单个变量的离散度,协方差是两个变量的联合波动。方差是协方差的特例(( Var ( X ) = Cov ( X , X ) \text{Var}(X) = \text{Cov}(X, X) Var(X)=Cov(X,X) )),但用途不同——方差看分散,协方差看关系。在多变量场景下,它们融合成协方差矩阵,成为理解数据结构的关键工具。下次分析数据时,不妨用方差看看波动,用协方差探探关联,二者结合,数据故事更完整!

后记

2025年2月25日13点33分于上海,在Grok 3大模型辅助下完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值