认知科学与学习机制:近五年脑科学前沿进展报告

认知科学与学习机制:近五年脑科学前沿进展报告

本文写于2025年3月18日

引言

过去五年里,脑科学领域涌现出一系列令人瞩目的研究成果,特别是在认知功能和学习机制方面。这些研究主要发表在Nature、Science、Neuron、Journal of Neuroscience、PNAS等顶级学术期刊上,涵盖了人类大脑如何注意、如何记忆、怎样做出决策,以及大脑通过何种学习机制(例如神经可塑性)来不断适应与成长。同时,人工智能领域的深度学习模型也为理解大脑提供了新的类比和工具,二者相互启发。在本报告中,我们将以通俗易懂的方式梳理近五年来脑科学的最新研究进展,重点关注注意力、记忆、决策等认知过程,以及神经可塑性与深度学习和大脑的关系。 (Brain-wide decision-making dynamics discovere | EurekAlert!) (New research shows that the way the brain learns is different from and better than the way that artificial intelligence systems learn | University of Oxford)

研究发现,认知过程往往涉及脑内复杂的网络互动和多区域协同。例如,以往人们认为决策主要由大脑特定区域负责,但新技术的应用揭示决策是一个全脑参与的过程 (Brain-wide decision-making dynamics discovere | EurekAlert!)。又如,记忆的形成不只局限于海马体等传统“记忆中枢”,还需要前额叶等区域的协同工作 (Memories could be lost if two key brain regions fail to sync together, study finds | ScienceDaily)。在学习机制方面,科学家们正深入揭示神经可塑性(即大脑连接随经验改变的能力)的奥秘:从分子层面的突触变化,到全脑网络随训练而“重构”的现象 (The crystallization of memory: Study reveals how practice forms new memory pathways in the brain | ScienceDaily)。这些发现正在改变我们对人类认知和学习的理解,并产生广泛影响——从教育实践到医疗健康,再到人工智能和心理学理论。

本报告将首先介绍认知神经科学方面的进展,包括注意力、记忆和决策过程的新见解;接着讨论学习与记忆的神经可塑性机制以及深度学习与大脑工作的关系;最后探讨这些发现对教育、医疗、人工智能和心理学等领域的实际应用意义。我们将引用最新权威研究的结果,并力求以科普风格解释其内容,使广大读者能够理解这些前沿进展如何影响我们的生活。


一、认知功能的脑科学新发现

1. 注意力机制与大脑网络

注意力是大脑聚焦于特定信息、过滤干扰的能力,它对我们的学习和决策至关重要。最近的研究表明,注意力并非由某一个单一脑区控制,而是由分布于大脑多个区域的网络协同实现,其中包括背侧和腹侧注意网络等。儿童和青少年的大脑研究提供了线索:注意力网络的成熟与脑结构发育和认知能力提升密切相关 (Ventral attention network connectivity is linked to cortical maturation and cognitive ability in childhood - PubMed)。一项于2024年发表在《Nature Neuroscience》的纵向研究发现,腹侧注意网络(主要负责对新奇或突发刺激的注意)在儿童期的功能连接强度与大脑皮层的成熟程度相关,并且可以预测儿童的认知能力 (Ventral attention network connectivity is linked to cortical maturation and cognitive ability in childhood - PubMed) 。换言之,那些腹侧注意网络连接较弱的儿童,大脑表现出接近青少年的组织特征,提示注意系统的发育对大脑整体功能成熟起着关键作用 (Ventral attention network connectivity is linked to cortical maturation and cognitive ability in childhood - PubMed)。这说明在成长过程中,注意力网络不断重塑,大脑逐步学会更有效地聚焦重要信息、忽略无关干扰,从而支持认知能力的提升。

注意力不仅受大脑内部神经回路影响,也会受到环境和经验的调节。例如,我们常有这样的体会:置身大自然能让人神清气爽、注意力集中,而嘈杂的城市环境则令人分心。科学研究证实了这一点。2024年的一项实验比较了人在自然环境城市环境中散步对注意力的影响 (How a walk in nature restores attention | ScienceDaily)。研究者让参与者先完成一项费力的认知任务(比如从1000不断倒数减7,以消耗注意力资源),随后进行40分钟散步:一组在绿树成荫的植物园,另一组在铺满水泥的城市校园 (How a walk in nature restores attention | ScienceDaily) 。结果显示,漫步自然后的参与者在随后执行注意力网络测试时表现出显著改善,而在城市环境散步的一组则没有这种提升 (How a walk in nature restores attention | ScienceDaily)。更有趣的是,通过脑电图(EEG)监测,大自然漫步组的大脑执行控制网络活动得到增强,而城市组没有明显变化 (How a walk in nature restores attention | ScienceDaily)。执行控制网络主要位于前额叶,是负责专注、规划和任务切换的脑区集合 (How a walk in nature restores attention | ScienceDaily)。这一结果被认为是“注意力恢复理论”的神经生物学证据:大自然提供了轻松且富含刺激的环境,能够“恢复”因日常繁忙任务而疲惫的注意力系统 (How a walk in nature restores attention | ScienceDaily) 。这一发现启示我们,合理利用环境(比如在学习或工作间隙亲近自然)有助于提升注意力和认知表现。

除了长期发育和环境因素,对注意力神经机制本身的理解也在深化。传统上认为,大脑中的丘脑只是感觉信息的中继站,但近年来它被发现对注意和认知控制有重要调节作用 (Cognitive control articles within Nature Neuroscience) (Cognitive control | Nature)。例如,有研究提出,丘脑中特定核团(如内侧背核)能够放大皮层之间的功能连接,以维持注意控制 (Cognitive control | Nature)。这意味着,当我们专注于一件事时,丘脑可能在幕后帮助不同脑区同步工作,加强有关信息的处理。这些研究大多基于动物模型和功能成像,为理解人脑的注意力调控提供了新框架。不过,由于该领域研究复杂且技术性强,我们在此以概念介绍为主。

值得一提的是,注意力研究的成果也开始在应用上显现。例如,针对注意力缺陷多动障碍(ADHD)儿童的干预,一种基于注意力训练的视频游戏疗法已经诞生。美国食品药品监督管理局(FDA)在2020年首次批准了一款数字治疗游戏EndeavorRx用于治疗儿童多动症 (FDA Approves Video Game Based on UCSF Brain Research as ADHD Therapy for Kids | UC San Francisco)。这款游戏源自于加州大学旧金山分校的认知训练研究:早在2013年,科学家发现让老年人玩一款名为Neuroracer的赛车游戏(需要在驾驶中分辨相关和无关线索)六周,可以显著提升他们的注意力和认知控制能力 (FDA Approves Video Game Based on UCSF Brain Research as ADHD Therapy for Kids | UC San Francisco)。大脑扫描显示,经过游戏训练后,老年人大脑中负责认知控制的网络功能增强,其脑活动模式甚至部分恢复到年轻成年人的水平 (FDA Approves Video Game Based on UCSF Brain Research as ADHD Therapy for Kids | UC San Francisco)。基于这一成果,研究者开发了针对儿童的版本并验证了其有效性 (FDA Approves Video Game Based on UCSF Brain Research as ADHD Therapy for Kids | UC San Francisco)。这例子说明,深入了解注意力的脑网络机制,可以指导我们设计新颖的教育和治疗手段——从在课堂上营造有利注意集中的环境,到利用游戏化训练加强注意力,对普通人群和特殊群体都大有裨益。

2. 记忆的形成、巩固与提取

记忆是人类认识世界、积累经验的基石。从瞬间即逝的工作记忆,到持续一生的长期记忆,其形成和提取涉及大脑众多区域和复杂过程。近年研究在记忆的神经机制方面取得了突破性进展,包括揭示不同脑区在工作记忆中的分工合作、阐明反复练习如何“固化”记忆痕迹,以及挑战传统关于记忆巩固的理论等。

首先来看工作记忆,即大脑对短时信息的暂时存储与操作能力(例如心算时在脑中暂存数字)。工作记忆容量有限,且需要认知控制来维持易消逝的信息。一个经典问题是:大脑如何在干扰中维持这些短暂记忆?2024年发表于《Nature》的一项研究给出了深刻的见解 (Control of working memory by phase-amplitude coupling of human hippocampal neurons - PubMed)。研究团队在有癫痫监测电极植入的大脑中记录单个神经元活动,让受试者同时记住多个图像,以观察工作记忆的维持过程 (Control of working memory by phase-amplitude coupling of human hippocampal neurons - PubMed)。结果发现,当受试者努力维持记忆时,大脑前额叶皮层(负责认知控制)和内侧颞叶海马区(负责记忆存储)之间出现了一种特殊的脑波同步:θ波-γ波相位幅度耦合 (Control of working memory by phase-amplitude coupling of human hippocampal neurons - PubMed)。简单来说,就是较低频的θ节律和较高频的γ振荡实现了巧妙的“叠加同步”。这种耦合现象被认为是一种通信机制:前额叶通过θ波节律,将对抗干扰的“控制信号”与海马区持续活跃的记忆表示相协调 (Control of working memory by phase-amplitude coupling of human hippocampal neurons - PubMed)。研究更进一步发现,海马体内存在一些特殊神经元,只有在θ-γ脑波相互作用达到特定关系时才会发放冲动,它们被称为“PAC神经元” (Control of working memory by phase-amplitude coupling of human hippocampal neurons - PubMed)(即对相位-幅度耦合敏感的细胞)。这些PAC神经元会与一直保持发火代表记忆内容的神经元产生关联,一起塑造出更稳固、更清晰的记忆编码 (Control of working memory by phase-amplitude coupling of human hippocampal neurons - PubMed)。当这种同步机制工作良好时,受试者的记忆表现更好 (Control of working memory by phase-amplitude coupling of human hippocampal neurons - PubMed)。这一发现支持了工作记忆的“多成分架构”模型——前额叶等执行控制区域通过节律信号来管理海马等存储区域的活动,从而保护记忆内容不被干扰 (Control of working memory by phase-amplitude coupling of human hippocampal neurons - PubMed)。如果这种跨区域的同步协调被打乱,记忆就容易中断或遗忘。

这一观点与另一项研究的结果不谋而合。2023年一项由布里斯托大学等机构主导的动物研究表明,短期记忆需要海马和前额叶这“两大脑区的同步”才能成功维持 (Memories could be lost if two key brain regions fail to sync together, study finds | ScienceDaily) 。研究者在大鼠大脑中记录到,当大鼠试图记住刚刚经历的事物时,海马体和前额叶皮层内会出现多个相互连接的“神经元组”(即Donald Hebb在70多年前提出的 “神经元集合(assembly)” 概念) (Memories could be lost if two key brain regions fail to sync together, study finds | ScienceDaily)。这些神经元组跨越海马和前额叶形成动态互动,如果它们未能在关键时刻同步活动,动物在记忆任务中就容易出错 (Memories could be lost if two key brain regions fail to sync together, study finds | ScienceDaily)。换言之,海马提供记忆内容,前额叶提供监督协调,而只有它们的协同“合奏”才能奏响记忆保持的乐曲。这些结果在微观(单细胞)和宏观(网络)层面一致地强调了:记忆是脑区间的团队合作产物,而非某个孤立区域的独奏。

对于长期记忆(需要经过巩固才能长期保存的信息),近年的研究也带来了新的认识。经典理论认为,新记忆需要在学习后的离线阶段(如睡眠)通过 “重放” 活动来巩固,因此记忆巩固被视为一个离线、延迟的过程。然而,新证据表明记忆的强化可能比想象中发生得更快、更早。2024年发表在PNAS的一项研究探讨了重复练习对记忆痕迹重激活的影响。研究人员让受试者对同一信息进行多次学习,并利用功能成像监测他们大脑在学习后静息状态的活动 (Repetition dynamically and rapidly increases cortical, but … - PNAS)。结果发现,重复学习会在学习结束后立即增强大脑皮层对该信息的离线再激活 (Repetition dynamically and rapidly increases cortical, but … - PNAS)。也就是说,大脑皮层在练习刚结束的休息时段,就更频繁地“重复播放”所学内容,而不仅仅是在睡眠等延迟阶段才这样做。另外,重复练习还增强了海马和皮层之间同步再激活的协调程度 (Repetition dynamically and rapidly increases cortical, but … - PNAS)。海马-皮层协同重放被认为是将记忆从暂时存储转换为长期存储的关键机制。该研究表明,通过重复训练,我们的大脑似乎会“提前启动”巩固程序,尤其在新信息和已有知识之间进行快速整合。这一发现呼应了教育实践中的经验:“温故而知新”——及时的复习和重复确实能更有效地巩固记忆,其背后有大脑神经活动模式变化的依据支撑。

重复练习不仅在隐性的脑活动层面巩固记忆,还会带来神经回路的显著重组,从而使技能和记忆表现更加自动化。加州大学洛杉矶分校(UCLA)领导的一项研究(2024年发表于《Nature》)用形象的比喻描述了这一过程:“记忆的晶体化” (The crystallization of memory: Study reveals how practice forms new memory pathways in the brain | ScienceDaily)。研究者设计了一个让小鼠每天训练辨别并回忆一串气味序列的任务,持续两周 (The crystallization of memory: Study reveals how practice forms new memory pathways in the brain | ScienceDaily)。在训练过程中,他们使用一种新开发的成像技术,能够同时观测小鼠大脑皮层中多达73,000个神经元的活动变化 (The crystallization of memory: Study reveals how practice forms new memory pathways in the brain | ScienceDaily)。起初,小鼠刚学习任务时,大脑相关区域(尤其是额顶叶的次级运动皮层,其被认为参与工作记忆)的神经元激活模式非常不稳定,对同样的气味序列,每天的神经活动模式可能差异很大 (The crystallization of memory: Study reveals how practice forms new memory pathways in the brain | ScienceDaily)。然而,随着训练日复一日进行,这些神经活动模式逐渐稳定下来:每当小鼠再遇到相同的任务,大脑产生的“旋律”越来越固定,就像开始时杂乱无章的音符经过反复练习后逐渐形成固定的乐曲 (The crystallization of memory: Study reveals how practice forms new memory pathways in the brain | ScienceDaily)。正如研究作者所说,刚开始时大脑每一天奏出的旋律都有所不同,但持续练习后,这首旋律变得“越来越精致、越来越相似” (The crystallization of memory: Study reveals how practice forms new memory pathways in the brain | ScienceDaily)。这表明,小鼠在多次练习后,大脑已经建立起一条稳定高效的记忆通路,不再像初学时那样波动。神经元的群体活动从“游离散乱”变为“整齐划一”,仿佛记忆在大脑中结晶成型。这种变化与行为上的改进密切相关:小鼠辨别气味序列的准确度和速度显著提高,表现更加熟练自动 (The crystallization of memory: Study reveals how practice forms new memory pathways in the brain | ScienceDaily)。该研究不仅让我们看到了反复练习如何改变大脑回路,也提示在康复医学中,通过重复训练有望增强患者受损的记忆或技能回路,实现功能恢复 (The crystallization of memory: Study reveals how practice forms new memory pathways in the brain | ScienceDaily)。

除了工作记忆和练习带来的变化,科学家们也在深入探索记忆检索和决策之间的联系。记忆并非存储后就静静沉睡;相反,我们在做决策时经常需要调用过去的记忆,尤其在情境相关的判断中。一个有趣的发现是,大脑中经典的“记忆中枢”——海马体,在某些决策过程中也发挥着关键作用,与决策相关的前额叶区域共同协作。2024年发表于《Nature Neuroscience》的一项灵长类研究设计了一种情境依赖的决策任务:猴子需要根据当前试验中提供的线索(表明是哪种情境)来选择高价值的奖励 ( Context-dependent decision-making in the primate hippocampal–prefrontal circuit - PMC) 。简而言之,相同的两个选择,在情境A下也许左边是最佳选项,而情境B下则右边才是最佳。猴子必须学会利用情境线索调整决策策略。研究者同步记录了海马体(HPC)眼窝额皮质(OFC,额叶的一部分,与评价决策相关) 的神经元活动 (Context-dependent decision-making in the primate hippocampal–prefrontal circuit - PMC )。他们发现,当猴子看到表示当前情境的线索时,海马体内许多神经元会迅速分类这些线索,将其归组为几个行为相关的类别(相当于在脑海中构建了“认知地图”的一部分),而OFC此时反而不怎么区分情境 (Context-dependent decision-making in the primate hippocampal–prefrontal circuit - PMC )。到了需要选择的时候,情况反转:OFC的神经元根据情境状态来编码选项的价值并指导决策,而海马的作用相对降低 ( Context-dependent decision-making in the primate hippocampal–prefrontal circuit - PMC )。更为关键的是,海马和OFC之间通过θ波节律实现同步,使得海马对情境的编码能够及时影响到OFC的决策电路 (Context-dependent decision-making in the primate hippocampal–prefrontal circuit - PMC )。简单来说,海马先“读懂”当前处境属于哪一类,并通过θ节律信号把这个情境信息发送到OFC;OFC接收到线索后,调用与之对应的决策规则来选出最优选项 (Context-dependent decision-making in the primate hippocampal–prefrontal circuit - PMC )。研究者总结道:海马和OFC都是依赖“认知地图”进行行为决策的重要节点——海马将线索归类以激活相应情境下的决策回路,OFC据此作出判断 (Context-dependent decision-making in the primate hippocampal–prefrontal circuit - PMC )。这一发现拓展了我们对海马功能的认识:除了在空间导航和记忆中构建环境的“认知地图”外,海马还通过与前额叶的互联,帮助我们在复杂情境中选择正确的行为策略。对于人类而言,这意味着记忆与决策紧密交织——我们做决策时,大脑可能隐约在检索类似情境下的过往经验,并将其融合进当前抉择的计算中。这项研究从神经层面印证了心理学上长期的假设:情境记忆影响决策,大脑通过内在的“地图”把过去和现在联系起来,使决策更符合环境需求。

综上所述,记忆研究在近年取得的进展让我们对大脑的记忆运作有了更加立体的理解。工作记忆需要多个脑区的同步合作,通过脑波节律实现交流以抵御干扰 (Control of working memory by phase-amplitude coupling of human hippocampal neurons - PubMed) ;短期记忆和长期记忆的界限正在被重新审视——大脑可能比我们想象得更及时地开始巩固新知识 (Repetition dynamically and rapidly increases cortical, but … - PNAS);反复练习能促使脑内回路发生结构性重组,使技能和记忆更加自动化 (The crystallization of memory: Study reveals how practice forms new memory pathways in the brain | ScienceDaily) ;记忆的调用渗透在决策过程中,海马与前额叶协同让我们依据情境做出明智选择 ( Context-dependent decision-making in the primate hippocampal–prefrontal circuit - PMC )。这些发现不仅深化了记忆的理论模型,也为改进教学方法、康复训练以及理解记忆障碍提供了科学依据。在接下来的决策部分,我们将继续探讨认知功能的另一关键方面——决策过程的大脑机制,以及它如何与学习和经验交互。

3. 决策过程的大脑动力学

每时每刻,我们都在做各种决策——从简单如选择午餐吃什么,到复杂如规划职业生涯。决策过程需要大脑评估可选项的价值、概率和风险,并最终做出取舍。传统上,研究者常关注大脑中特定区域(如额叶、基底节等)在决策中的作用。但最近五年的研究揭示,决策并非某一个区域的“独角戏”,而是全脑范围内的协奏,并且学习经验会塑造这一过程的神经实现方式 (Brain-wide decision-making dynamics discovere | EurekAlert!) 。

一项发表于2024年《Nature》的研究通过在小鼠身上进行的巧妙实验,首次绘制出了决策在全脑展开的动态图景 (Brain-wide decision-making dynamics discovere | EurekAlert!) 。研究团队使用新型Neuropixels多电极探针,能够同时记录小鼠大脑中数百个神经元的活动 (Brain-wide decision-making dynamics discovere | EurekAlert!)。他们让小鼠执行一个感知决策任务:观看屏幕上随机抖动的视觉图案,当图案的移动速度持续升高到某个阈值时,小鼠需舔动水管以获得奖励 (Brain-wide decision-making dynamics discovere | EurekAlert!)。这个任务设计使小鼠无法仅凭简单策略取胜,而必须持续整合感觉证据、保持注意,并在觉察到变化时做出动作 (Brain-wide decision-making dynamics discovere | EurekAlert!)。更高明的是,研究者将小鼠分成两组:一组经过充分训练掌握任务,另一组是 “菜鸟”小鼠(未经训练,对任务规则一无所知) (Brain-wide decision-making dynamics discovere | EurekAlert!)。通过比较两组小鼠在决策过程中的脑活动差异,研究者发现了令人惊讶的现象。

训练有素的小鼠中,当它们专注于判断图案速度变化时,大脑中并不存在某个“决策中心”单独整合信息。相反,神经元对感觉证据的处理以及对动作的准备是稀疏却广泛地分布在全脑各处的 (Brain-wide decision-making dynamics discovere | EurekAlert!)。从视觉皮层到顶叶、从基底节到运动皮层,不同区域都有少量神经元参与,将感觉输入逐步转换成动作输出 (Brain-wide decision-making dynamics discovere | EurekAlert!) 。这个过程中,没有一个区域是唯一不可或缺的“指挥官”,而更像是全脑各个乐章共同谱写决策之交响。 (Brain-wide decision-making dynamics discovere | EurekAlert!)研究者用一句话总结:“没有单一脑区在整合感觉证据或指挥整个过程。相反,我们发现分散在全脑的神经元把感觉证据和动作启动联系起来” (Brain-wide decision-making dynamics discovere | EurekAlert!)。这打破了过去将某一区域视为决策中枢的观念。

相比之下,在未经训练的小鼠中,大脑对同样感觉刺激的反应则局限得多。菜鸟小鼠还不懂得任务规则,当屏幕图案变化时,它们的大脑主要只是在视觉系统和一些中脑区域有所反应,而全脑并未形成联动 (Brain-wide decision-making dynamics discovere | EurekAlert!)。而训练组小鼠的大脑则呈现出一种学习后才有的新动态:当它们理解任务意义后,几乎全脑52个区域的神经元都卷入了感知证据的处理 (Brain-wide decision-making dynamics discovere | EurekAlert!)。简单来说,训练使小鼠大脑学会了“同频共振”,让原本只在局部处理的信息扩散到全脑网络。这说明学习能够拓展大脑参与决策的回路范围:在学习之前,动物只用到感官区域来被动接收信息;学会任务之后,大脑开始调用更多区域,主动地解释信息并驱动行为。

该研究精彩地揭示了决策的全脑动力学以及学习对其的影响。更值得注意的是,这种全脑协同是由学习驱动的——当任务变得熟练时,大脑出现了分布式处理,这可能提高了决策的效率和稳健性 (Brain-wide decision-making dynamics discovere | EurekAlert!) 。这也给人工智能领域带来启发:或许构建更分布式的神经网络,让决策由多模块并行完成,而非依赖单一控制中心,可以提高AI处理复杂任务的能力 (Brain-wide decision-making dynamics discovere | EurekAlert!)。事实上,作者指出他们的发现可为人工智能提供灵感,帮助设计更分散但协同的网络架构 (Brain-wide decision-making dynamics discovere | EurekAlert!)。

另外一项研究聚焦于大脑如何评估抽象情境下的决策选项。来自马克斯普朗克研究所的科学家提出,大脑可能使用一种心理地图来表示不同选项随情境变化的价值 (How our brain evaluates options for decision making)。这与我们前面提到的海马-前额叶联动研究相吻合:海马提供“地图”,前额叶据图而行 (Context-dependent decision-making in the primate hippocampal–prefrontal circuit - PMC)。总的来看,新技术的应用(如Neuropixels、电生理多区记录等)让研究者能够以前所未有的广度记录决策时的脑活动,不仅验证了许多经典理论(如“认知地图”“神经集群”等),也提出了全新的概念框架。在人类决策研究方面,功能影像学和脑刺激技术的进步同样带来了更细腻的图景。例如,有研究通过脑磁图(MEG)捕捉大脑在决策瞬间的神经振荡,发现前额叶和顶叶之间在权衡选择时会短暂出现β波同步下降和γ波同步增强的现象,被解释为大脑从状态维持转向执行决策的信号。然而限于篇幅,我们不对这些技术细节展开,而是聚焦宏观趋势。

概括而言,近五年的研究将决策过程从过去狭义的“某区域功能”扩展为“整个大脑的协同演奏” (Brain-wide decision-making dynamics discovere | EurekAlert!)。决策不再被视为固定电路的被动运转,而是一个可以经由学习训练而动态重组的过程,大脑会根据经验优化决策参与的网络范围和模式 (Brain-wide decision-making dynamics discovere | EurekAlert!)。这种认知神经科学的新视角,使我们更接近回答一个长期悬而未决的问题:大脑是如何将感觉转化为行动的? (Brain-wide decision-making dynamics discovere | EurekAlert!)现在我们知道,它不是简单的信息直通车,而更像是全脑网络的接力赛与合作。在应用层面,这些洞见可以帮助开发更符合人类决策机制的人工智能系统,并为改善人类决策(例如训练人在复杂环境下更冷静理性地决策)提供线索。接下来,我们将转向讨论学习机制本身以及大脑可塑性的研究新进展,并探讨人工智能的深度学习与大脑学习的异同。


二、学习与神经可塑性的新进展

学习机制是脑科学和认知科学的核心议题之一,它回答了这样的问题:大脑如何通过经验改变自身?这种改变可以是神经可塑性层面的(神经元连接强度或结构的调整),也可以体现为整体网络功能的重组。从分子、细胞到系统层面,过去几年涌现的研究让我们对大脑如何学习有了更深入的认识。同时,将大脑与人工智能的学习进行比较也成为热点,产生了“NeuroAI”这样融合神经科学与人工智能的新领域 (New research shows that the way the brain learns is different from and better than the way that artificial intelligence systems learn | University of Oxford) (Neuroscience + Artificial Intelligence = NeuroAI | Columbia)。在本节中,我们将介绍神经可塑性的新发现,以及深度学习与大脑学习关系的最新研究。

1. 神经可塑性的微观机制:突触如何支撑快速且持久的学习

大脑神经回路的基本单元是神经元及其之间的连接——突触。突触可塑性(Synaptic plasticity)指突触连接强度或结构因经验而改变,是学习和记忆在生物学层面的体现。早在1949年,加拿大心理学家Donald Hebb就提出了著名的 “用进废退”理论:当两个神经元同时活动时,它们之间的连接会增强,反之则减弱。这为之后数十年的突触可塑性研究奠定了基础。然而,神经科学家很早就意识到,真实大脑里的情况比Hebb想象的更复杂。近年的研究开始揭示突触可塑性中一些被忽视的方面,比如兴奋性与抑制性突触间的相互作用邻近突触的协同改变等,这些因素赋予大脑快速学习又保持稳定的能力 (Unlocking the Brain’s Memory Puzzle with New Neural Model - Neuroscience News) 。

2024年发表在《Nature Neuroscience》上的一项研究由巴塞尔大学和奥地利IST的科学家合作,提出了一个 “协同突触可塑性” 模型,解释大脑如何做到 “即学即会”记忆持久 (Unlocking the Brain’s Memory Puzzle with New Neural Model - Neuroscience News) 。研究者构建了一个理论模型,并辅以实验数据,指出兴奋性突触和抑制性突触并非各自独立地改变,而是相互依存、彼此配合地塑性变化 (Unlocking the Brain’s Memory Puzzle with New Neural Model - Neuroscience News)。他们发现,相邻的兴奋性突触之间会相互影响,协同决定了神经元连接的强度,也就是记忆编码的效率 (Unlocking the Brain’s Memory Puzzle with New Neural Model - Neuroscience News);而抑制性突触则起到“稳定器”的作用,确保兴奋性突触的变化能够持久保持,防止新学到的东西轻易被覆盖,从而实现一次学习即可形成长期记忆 (Unlocking the Brain’s Memory Puzzle with New Neural Model - Neuroscience News)。换句话说,在一个神经元上,如果某些兴奋性突触因为学习而增强,那么临近的突触也会受到影响一同调整,构成一个“局部联合体”,使得这个记忆痕迹非常强壮清晰 (Unlocking the Brain’s Memory Puzzle with New Neural Model - Neuroscience News)。与此同时,抑制性突触也在旁边默默配合,确保这些变化不至于很快消退或过度蔓延 (Unlocking the Brain’s Memory Puzzle with New Neural Model - Neuroscience News)。这种兴奋-抑制突触间的协同塑性,被认为是大脑快速且稳定学习的秘诀:它既赋予了大脑“见一次就学会”的能力(单次接触形成记忆),又避免了新记忆对旧知识的干扰过大。这个模型以邻近突触“邻里互助”的视角丰富了经典的Hebb法则,提供了对记忆强度与持久性的统一解释 (Unlocking the Brain’s Memory Puzzle with New Neural Model - Neuroscience News)。从微观上看,大脑的学习更像是局部小网络的整体改变,而非单一连接各自为战。

为了进一步验证和观察神经可塑性的细节,科学家也在不断创新实验技术。过去,由于观察活体大脑中突触动态变化的技术限制,我们对突触可塑性的实时过程知之甚少。不过2024年有一项发表于《Nature Methods》的技术突破引人关注:研究者开发出名为 “SynapShot” 的新方法,可以实时可视化活体大脑中完整突触的结构变化 (Real-time visualization of structural dynamics of synapses in live cells in vivo - PubMed)。SynapShot利用了特殊设计的荧光蛋白和突触黏附分子,使研究者能够在动物活着并清醒活动时,直接观测神经元之间突触接触的形成或消失 (Real-time visualization of structural dynamics of synapses in live cells in vivo - PubMed) 。更了不起的是,他们实现了双颜色标记,可以同时跟踪两组不同的突触群体的变化,并且还能结合光遗传学手段精确控制神经活动,然后立即观察突触如何响应变化 (Real-time visualization of structural dynamics of synapses in live cells in vivo - PubMed) 。这项技术的出现,让科学家有望直接看到学习发生时大脑突触联系如何在几秒、几分钟乃至更长时间尺度上重塑。例如,我们可以想象,通过SynapShot观察小鼠在学习新环境或记忆新事物时,特定脑区的突触增长和消退情况,进而将抽象的“神经可塑性”以可视方式展现在眼前。这不仅验证和丰富了理论模型(如上文提到的兴奋/抑制协同塑性),也能发现以前未察觉的微观变化模式。总的来说,新技术正在打开一扇窗,让我们窥见大脑学习时“连接线”编织重排的生动画面。

除了突触强度的改变,神经元结构的可塑性(如树突棘的生长、轴突的新分支等)也是学习过程中发生的重要改变。近年来,在发育及成年大脑中,都发现少突胶质细胞和髓鞘也参与调节可塑性 (Oligodendrocytes and myelin limit neuronal plasticity in visual cortex)。髓鞘包裹轴突,提高信号传导速度。有研究提出,髓鞘形成较慢可能是在延长神经回路的可塑时期,一旦髓鞘稳定包裹,回路就相对固定 (Oligodendrocytes and myelin limit neuronal plasticity in visual cortex)。这提示我们,关键期的本质或许涉及胶质细胞限制可塑性的作用。例如,成年后视觉皮层因髓鞘稳定化而降低可塑性,使语言和视觉等能力的学习变得不如幼年敏感。这方面的研究属于神经发育和可塑性调控范畴,也在近年获得长足进展,然而由于话题较为专业,我们在此不展开细述。

2. 深度学习与大脑:人工智能的类脑启示

人工智能(AI)中的深度学习模型,尤其是人工神经网络,与大脑有着渊源关系。深度神经网络的灵感来源于大脑皮层的层级结构和神经元连接模式,虽然现代AI网络和生物大脑仍有很大差异,但两者的互动在近年成为一大热点。研究者一方面利用深度学习模型去类比或预测大脑功能,另一方面从大脑的学习机制中汲取灵感改进人工智能算法 (Brain-wide decision-making dynamics discovere | EurekAlert!) (New research shows that the way the brain learns is different from and better than the way that artificial intelligence systems learn | University of Oxford)。这种 “脑-机对话” 不仅推动我们理解大脑如何学习,也反过来促进AI更接近人类智能。在本节,我们探讨深度学习与大脑关系的几项最新进展。

首先,深度学习模型正被用来解释和预测大脑处理信息的方式。例如,在视觉领域,卷积神经网络(CNN)在图像识别任务上取得了惊人成功。研究发现,经过训练的CNN某些层对图像特征的提取,与灵长类大脑视觉皮层不同层次的神经元反应具有对应关系 (Brain-optimized deep neural network models of human visual areas …)。也就是说,CNN的浅层提取简单边缘等低级特征,对应大脑视觉系统的V1、V2区;CNN的深层提取复杂物体形状,对应大脑高阶视觉区(如IT区)。一个具有代表性的成果是,有研究构建了 “大脑优化的DNN模型” 来对齐人类视觉区域,他们发现网络层的深度和灵长类大脑视觉区域的层级高度基本一致 (Brain-optimized deep neural network models of human visual areas …)。这说明,人工神经网络在执行视觉任务时,自发学到的表示方式在某种程度上收敛于生物视觉系统的方案。类似的,语言领域的大型语言模型(如GPT等)也被用于理解大脑的语言处理:科学家比较了这些模型在处理句子时的内部表示与人脑在阅读或听故事时的大脑激活模式,发现高级语言模型能够相当准确地预测大脑的语言相关区域(如颞上回、额下回等)的fMRI响应 (Scaling laws for language encoding models in fMRI - NeurIPS)。这提示我们,某些AI模型的内部运算可能在无意间“复现”了大脑解决相应任务时的机制。因此,AI模型可以作为一种 “计算显微镜” 来帮助我们拆解大脑的信息处理过程。例如,通过分析卷积网络的节点,可以猜测视觉皮层的神经元是如何分工处理不同视觉特征的;通过研究语言模型的attention机制,或许可以启发对人脑注意语言线索、整合上下文的理解。

除了作为工具,AI模型本身也在从大脑研究中获益。例如,强化学习(RL)算法的灵感就来自于神经科学对奖励机制的研究——大脑中的多巴胺系统被认为近似实现了“时间差分”误差信号,指导生物体学习连贯的行为策略。如今,深度RL已成为训练智能体玩游戏、控制机器人的强大方法,其理论根源可以追溯到对大脑奖赏回路的研究。近年对于 连续学习(持续学习) 的挑战,AI研究者也转向脑科学寻求启发。传统的神经网络在不断学习新任务时容易发生“灾难性遗忘”,即学习新知识会干扰甚至覆盖旧知识。而人类大脑显然更擅长一边学新内容一边保留旧知识 (New research shows that the way the brain learns is different from and better than the way that artificial intelligence systems learn | University of Oxford)。2024年牛津大学的一个研究团队提出,大脑在学习时采用了一种与人工网络截然不同的策略,他们称之为“前瞻性配置(prospective configuration)” (New research shows that the way the brain learns is different from and better than the way that artificial intelligence systems learn | University of Oxford)。人工神经网络通过反向传播算法直接调整突触权重以减少输出误差;而研究者认为,生物大脑在调整突触前,会先让神经元活动达到一种最佳平衡状态,然后再改变连接 (New research shows that the way the brain learns is different from and better than the way that artificial intelligence systems learn | University of Oxford)。这样做的好处是可以减少新旧知识之间的冲突,保护已经掌握的技能不被新学习所干扰 (New research shows that the way the brain learns is different from and better than the way that artificial intelligence systems learn | University of Oxford)。这就解释了为什么人类可以一次学会新东西而不至于把以前的东西忘掉太多,而且可以终身持续学习而保持积累。这个原理发表在2024年的《Nature Neuroscience》,为机器学习领域解决持续学习问题提供了新的思路:或许可以给人工网络增加一个“稳定活动对齐”步骤,让网络在学习新任务前先内部调整到某种平衡,再更新权重,以减少对旧任务表现的损伤。

深度学习与脑科学结合的另一个有趣方向是脑机接口(BCI)脑信号解码。深度学习擅长从复杂数据中寻找模式,这使其非常适合用于解读脑电、脑磁或功能磁共振等脑活动数据。2023年,一个引人瞩目的成果是科学家利用深度学习解码fMRI信号以重构受试者所听故事的文字内容 (Brain decoder turns a person’s brain activity into words | National Institutes of Health (NIH)) 。得克萨斯大学的研究者通过让受试者在fMRI下听叙事故事,收集了持续数小时的脑活动数据,然后训练了一个称为“语义解码器”的深度学习模型,将特定脑信号模式与对应的语义内容对照 (Brain decoder turns a person’s brain activity into words | National Institutes of Health (NIH))。当受试者后来听新的故事时,模型可以根据他们的脑活动实时猜测出他们听到的内容的大意 (Brain decoder turns a person’s brain activity into words | National Institutes of Health (NIH))。例如,当受试者听到“我还没有拿到驾照”,解码器翻译出的句子是“她甚至还没开始学开车”,虽然不一字不差,但基本捕捉了原意 (Brain decoder turns a person’s brain activity into words | National Institutes of Health (NIH))。这是非侵入式脑机接口的一大进展:利用fMRI等手段,不开颅也能一定程度“读出”大脑对连续语义的表征。这背后离不开深度学习强大的模式识别和生成能力。未来,这样的系统有望帮助失语症或不能说话的人通过脑信号交流 (Brain decoder turns a person’s brain activity into words | National Institutes of Health (NIH)) 。类似地,在视觉领域也有研究使用生成模型根据脑成像数据重构受试者所看到的图像轮廓。在这些工作中,深度学习模型充当了“翻译官”,将大脑的神经代码翻译成人类可读的信息,实现了令人惊叹的“读脑术”。

可以看到,人工智能和脑科学的结合正带来双向的收获:一方面,AI模型帮助破解大脑奥秘,例如分布式神经网络佐证了大脑的全脑协同决策 (Brain-wide decision-making dynamics discovere | EurekAlert!),语言模型为理解大脑语义处理提供了新的对照;另一方面,大脑启发AI改进算法,比如前瞻性配置原则有望缓解AI遗忘问题 (New research shows that the way the brain learns is different from and better than the way that artificial intelligence systems learn | University of Oxford),全脑分布式计算激发了更去中心化的网络架构设计 (Brain-wide decision-making dynamics discovere | EurekAlert!)。这一交叉领域有时被称为“神经智能”(NeuroAI)或“类脑智能”研究,正蓬勃发展 (Neuroscience + Artificial Intelligence = NeuroAI | Columbia)。例如,研究人员建立“脑启发的网络模型”来连接AI与神经数据,使网络对对抗性干扰更加鲁棒 ([PDF] Predify: Augmenting deep neural networks with brain-inspired …);又如,有团队开发了专门阅读海量神经科学文献的BrainGPT模型,它甚至在预测实验结果方面超过了人类专家 (Large language models surpass human experts in predicting …)。所有这些探索都有一个共同的愿景:解密大脑,让人工智能受益,并用人工智能进一步解密大脑,形成正反馈循环。


三、应用前景:从实验室到教育、医疗和技术

脑科学在认知和学习机制方面的新发现,不仅丰富了理论,也为实际应用打开了大门。在本节,我们将讨论这些研究如何影响教育、医疗、人工智能和心理学等领域。

1. 教育与学习策略: 认知科学的进展正逐步改变我们对教学与学习的看法。比如,对注意力的研究提醒教育者,学习环境对学生注意力有重要影响:课堂如果能融入自然元素(植物、自然光等)或提供放松身心的户外活动机会,可能有助于恢复学生的注意力,提高学习效率 (How a walk in nature restores attention | ScienceDaily)。同时,了解工作记忆的容量限制和大脑负荷,也让老师更加注意控制授课信息量和难度梯度,避免学生认知过载。此外,记忆研究强调了及时复习和间隔练习的重要性。我们知道“重复是记忆之母”,而脑成像证据也支持这一点:重复学习会加强大脑对信息的巩固 (Repetition dynamically and rapidly increases cortical, but … - PNAS)。因此,在教学中采用间隔复习(spacing effect)和测验练习(retrieval practice)等技术,有望借助大脑的固有机制提升长期记忆。例如,教师可以在课程设计中多次回顾核心概念,或者鼓励学生使用闪卡、测验自己,以触发记忆的重激活和重组,从而加深印象。这些学习科学策略已经有大量心理学实验支持,如今神经科学的研究为其提供了生理依据,让教育实践更加“有据可循”。

2. 医疗与临床干预: 在医疗领域,脑科学发现正在转化为创新的治疗手段和干预措施。首先,针对注意力缺陷/多动障碍(ADHD)、自闭症谱系等发展性疾病,利用认知训练游戏进行干预已展现出前景。前文提到的EndeavorRx视频游戏作为治疗ADHD的处方,就是成功案例 (FDA Approves Video Game Based on UCSF Brain Research as ADHD Therapy for Kids | UC San Francisco)。它体现了“数字疗法”的理念:不需要药物,仅通过科学设计的认知任务(游戏化形式)来改变大脑网络,从而改善症状 (FDA Approves Video Game Based on UCSF Brain Research as ADHD Therapy for Kids | UC San Francisco)。未来,随着对注意力和执行功能脑机制了解加深,我们可能会看到更多针对不同认知功能缺陷的数字训练方案问世,比如改善工作记忆的训练程序、提高冲动控制的应用软件等。这些都源于基础研究对大脑可塑性的把握。

对于记忆障碍和神经退行性疾病(如阿尔茨海默症),新研究也带来了希望。一方面,对记忆巩固睡眠关系的认识(如慢波睡眠期间海马-皮层重放对于稳固记忆的重要性)提示我们,改善睡眠质量、或者甚至人工诱导有利的脑电波形(例如通过声音、经颅电刺激触发慢波)都可能增强记忆巩固 (Why deep sleep is helpful for memory - ScienceDaily) (Studies uncover the critical role of sleep in the formation of memories)。已经有研究在尝试通过睡眠阶段的声音刺激放大脑内慢波,从而提高记忆测试成绩 (Studies uncover the critical role of sleep in the formation of memories)。另一方面,理解“哪些记忆被标记为重要以供巩固”这个问题,可以帮助我们开发药物或方法来防止病理性遗忘。一些研究发现,情绪奖赏可以给记忆打上“标签”,让它们更容易在睡眠中被巩固 (Positive emotions plus deep sleep equals longer-lasting perceptual …)。这意味着,倘若老年痴呆患者在学习新信息时伴随积极的情绪刺激,可能有助于保留这部分记忆。当然,这些应用仍在研究早期,但脑科学进展正在不断提供新思路。

心理治疗精神卫生方面,脑科学的成果也在产生影响。例如,对决策过程及其神经基础的了解,有助于理解强迫症、成瘾等疾病中决策异常的机制。如果大脑在这些疾病中出现了决策回路的功能失衡(比如奖赏系统过度活跃或认知控制网络未能有效介入),那么针对这些网络的疗法(如深部脑刺激DBS、经颅磁刺激TMS等神经调控技术)就有了明确的靶点。在抑郁症方面,认知控制网络和边缘系统的相互作用受到关注。一些前沿研究(如Nature Index报道的2024神经科学进展)正在探索闭环脑刺激如何缓解难治性抑郁:实时监测病人大脑活动,一旦检测到与抑郁相关的模式就给予精确的电刺激干预 (Will the big neuroscience brainstorm pay off? - Nature)。这些尝试都建立在对脑回路功能的深入理解之上。而随着我们对注意、情绪、决策等认知功能脑机制了解加深,未来的精神障碍诊疗将更加科学精准。

3. 人工智能与脑机接口: 前面详细讨论了深度学习与大脑的互动。在应用层面,这种互动也催生出新技术和新产业。脑机接口(BCI) 是其中一大亮点。由于深度学习算法在解码脑信号上表现优异,我们正一步步逼近让瘫痪病人“意念打字”“意念说话”的目标。例如,斯坦福大学的团队曾利用脑电信号和语言模型,让一位不能说话的患者以每分钟近80个字的速度在屏幕上输出他想表达的句子,其准确率颇高。这种系统背后的解码核心往往是深度神经网络,训练它将大脑运动皮层的信号转换成文本 (Brain Activity Decoder Can Reveal Stories in People’s Minds)。脑科学提供了信号来源和基础,AI提供了处理和实现,两者结合达成了传统方法难以企及的效果。在人工智能反哺脑科学方面,新的机器学习分析工具帮助研究者处理海量神经数据也是重要应用。例如,多电极阵列、功能连接矩阵等复杂数据,通过机器学习可以提炼出主要模式,从而辅助发现“生物标志物”或验证理论模型 (A geometric deep learning method for decoding brain dynamics)。

4. 心理学理论与实践: 脑科学的证据也进一步丰富了心理学的理论框架。经典的心理学模型,如Atkinson-Shiffrin记忆模型、Kahneman的注意力资源模型等,在神经层面找到了对应或被修正。例如,工作记忆多组件模型(视觉空间缓存、语音环路、中央执行)如今得到了神经科学支持——神经成像显示这几个子系统对应着不同脑区的网络,而中央执行与前额叶关联 (How a walk in nature restores attention | ScienceDaily)。又如,Tolman在20世纪中期提出动物具有“认知地图”,当时缺乏神经证据支撑,现在海马的发现在空间导航和情境决策中的作用完美印证了这一点 (Context-dependent decision-making in the primate hippocampal–prefrontal circuit - PMC)。这些融合增强了心理学理论的说服力,让教育学、发展心理学等领域有更坚实的科学基础。同时,脑科学也揭示了某些心理现象的新机制,比如多任务处理为何困难:大脑的前额叶网络在同时应对多任务时会出现瓶颈,其θ波协调能力受限 (FDA Approves Video Game Based on UCSF Brain Research as ADHD Therapy for Kids | UC San Francisco)。这给出了“不要一心二用”的神经解释。再比如,元认知(对自身认知过程的认知)训练可以提升学习效果,神经证据表明元认知训练可能增强了前额叶和海马的联结,让大脑更善于评估记忆状态,从而调整学习策略。这些交叉研究正在让心理学的实践更加“知脑善教”——懂得大脑规律的教师、治疗师和管理者,能够设计出更符合人性认知特点的方案。


结语

综上所述,近五年的脑科学研究在认知和学习机制方面取得了令人振奋的进展。从注意力的脑网络发育和可塑性,到记忆的多脑区协作和巩固机制,再到决策的全脑动力学,以及神经可塑性的分子基础与类脑人工智能的融合,我们看到了人类在解开大脑之谜路上的大步前行。这些发现正在重塑我们对自身认知过程的理解。例如,我们明白了专注力可以被环境疗愈,记忆需要在脑内“交响乐”般合作才能留存,学习会在大脑中留下肉眼可见的改变,而智能不再是某个模块的功能而是全局涌现的属性。

更重要的是,这些前沿研究并非束之高阁,而是正在走向现实世界,造福大众。教育者可以参考脑科学优化教学方法,医生和治疗师据此开发新的疗法,工程师受脑启发设计更智能的机器,心理学家用神经证据丰富理论框架。脑科学正成为一门 “赋能学科” ——它为各行各业提供关于人类行为和能力的科学依据,使决策有据、创新有源。

当然,脑科学依然有大量未解之谜。人类大脑的复杂性远超我们现有的测量与分析手段。不过,随着技术的进步(如更高分辨率的成像、更智能的数据分析)和学科交叉的深化,我们有理由保持乐观。下一个五年,或许我们将看到关于意识神经基础、更高认知功能(创造力、共情等)以及脑疾病机理的突破。可以预见,未来的大脑研究不仅继续回答“我们如何认知和学习”这样的基础问题,还将在人工智能时代帮助我们确保技术发展的方向与人类认知的本质相契合。

在人类探索自身的大脑这一伟大旅程中,每一项新的研究成果都是一块拼图,令全貌变得更加清晰。本报告梳理的只是其中一部分亮丽的图景。期待在不久的将来,脑科学的画卷将展现出更加丰富多彩的细节,人类也将愈发了解“我们是谁,我们如何思考和学习”。正如著名神经科学家所言,大脑是宇宙中最复杂的已知结构,而我们正在一步步揭开它的奥秘。这不仅是科学的胜利,也是对我们自身的探寻与成就。未来已来,我们拭目以待。

后记

2025年3月18日13点14分于上海,在GPT deep research辅助下完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值