深入理解 黎曼几何(Riemannian geometry):从流形(Manifold)到测地线 (geodesic)

深入理解 Riemannian 几何:从流形到测地线

如果你对 normalizing flows 感兴趣,尤其是最近的研究将它扩展到流形上(比如 Riemannian Continuous Normalizing Flows, RCNFs),那么理解 Riemannian 几何是绕不过去的门槛。别担心,今天我们会一步步拆解这段文字里的数学概念,带你走进这个“弯曲空间”的世界。准备好了吗?让我们从基础开始,逐步深入!

本文基于paper:Riemannian Continuous Normalizing Flows (https://arxiv.org/pdf/2006.10605)

什么是流形(Manifold)?

Riemannian 几何的基础是流形。简单来说,流形 ( MMM ) 是一个点集 ( zzz ),它的局部看起来像我们熟悉的线性空间(比如二维平面或三维空间),但整体可能弯曲。举个例子:

  • 二维平面是一个平坦的流形,局部和整体都像 ( R2\mathbb{R}^2R2 )。
  • 地球表面(球面)是一个二维流形,局部像平面,但整体是个球。
  • 一个甜甜圈表面(环面)也是二维流形,但形状更复杂。

数学上,流形 ( MMM ) 是一个光滑的集合,每个点 ( z∈Mz \in MzM ) 都带有一个切空间 ( TzMT_zMTzM ),它的维度和流形一样。切空间是什么?想象你在球面上某个点 ( zzz ),切空间 ( TzMT_zMTzM ) 包含所有可能通过这个点“切向经过”的方向。比如在地球表面,切空间是个二维平面,包含南北、东西方向的所有线性组合。

所有切空间的集合构成切丛(tangent bundle):
TM=⋃z∈MTzM TM = \bigcup_{z \in M} T_zM TM=zMTzM

Riemannian 度量:给流形加上“尺子”

流形本身只是个抽象的形状,要计算距离、角度或者体积,我们需要一个“尺子”——这就是 Riemannian 度量(metric tensor) ( g(z)g(z)g(z) )。对于每个点 ( zzz ),度量 ( g(z)g(z)g(z) ) 定义了切空间 ( TzMT_zMTzM ) 上的内积:
g(z):TzM×TzM→R,⟨u,v⟩z=g(z)(u,v) g(z): T_zM \times T_zM \to \mathbb{R}, \quad \langle u, v \rangle_z = g(z)(u, v) g(z):TzM×TzMR,u,vz=g(z)(u,v)
其中 ( u,v∈TzMu, v \in T_zMu,vTzM ) 是切向量,( ⟨⋅,⋅⟩z\langle \cdot, \cdot \rangle_z,z ) 是内积。

这个内积可以用矩阵表示。设 ( G(z)G(z)G(z) ) 是度量张量的矩阵形式,那么:
⟨u,v⟩z=uTG(z)v \langle u, v \rangle_z = u^T G(z) v u,vz=uTG(z)v
在欧几里得空间中,( G(z)G(z)G(z) ) 就是单位矩阵 ( III ),但在弯曲的流形上,( G(z)G(z)G(z) ) 会随 ( zzz ) 变化,反映空间的局部几何。

有了度量,一个流形就变成了 Riemannian 流形,记作 ( (M,g)(M, g)(M,g) )。它赋予了我们计算以下东西的能力:

  • 长度:切向量 ( uuu ) 的范数是 ( ∥u∥z=⟨u,u⟩z\|u\|_z = \sqrt{\langle u, u \rangle_z}uz=u,uz )。
  • 角度:两个切向量 ( u,vu, vu,v ) 的夹角由 ( cos⁡θ=⟨u,v⟩z∥u∥z∥v∥z\cos\theta = \frac{\langle u, v \rangle_z}{\|u\|_z \|v\|_z}cosθ=uzvzu,vz ) 给出。
  • 体积元素:度量诱导出流形上的测度 ( dVol(z)=∣G(z)∣dLeb(z)dVol(z) = \sqrt{|G(z)|} dLeb(z)dVol(z)=G(z)dLeb(z) ),其中 ( dLeb(z)dLeb(z)dLeb(z) ) 是勒贝格测度。
曲线长度与测地线:流形上的“直线”

在欧几里得空间中,直线的长度是两点间的欧氏距离。但在流形上,曲线 ( γ:[0,1]→M\gamma: [0,1] \to Mγ:[0,1]M ) 的长度要用积分定义:
L(γ)=∫01∥γ′(t)∥γ(t) dt L(\gamma) = \int_0^1 \|\gamma'(t)\|_{\gamma(t)} \, dt L(γ)=01γ(t)γ(t)dt
其中 ( γ′(t)=dγdt\gamma'(t) = \frac{d\gamma}{dt}γ(t)=dtdγ ) 是曲线的切向量,( ∥⋅∥γ(t)\|\cdot\|_{\gamma(t)}γ(t) ) 是由 ( g(γ(t))g(\gamma(t))g(γ(t)) ) 诱导的范数。

那么,流形上的“直线”是什么?这就是测地线(geodesic)。测地线是连接两点 ( z,y∈Mz, y \in Mz,yM ) 的最短路径,满足:
γ∗=arg⁡min⁡L(γ),γ(0)=z,γ(1)=y,∥γ′(t)∥γ(t)=1 \gamma^* = \arg\min L(\gamma), \quad \gamma(0) = z, \gamma(1) = y, \quad \|\gamma'(t)\|_{\gamma(t)} = 1 γ=argminL(γ),γ(0)=z,γ(1)=y,γ(t)γ(t)=1
测地线的速度是常数,类似于平面上匀速直线运动。例如:

  • 在平面 ( R2\mathbb{R}^2R2 ) 上,测地线就是直线。
  • 在球面上,测地线是大圆(比如飞行航线)。
距离与指数映射:流形上的导航工具

测地线定义了流形上的距离:
dM(z,y)=inf⁡L(γ) d_M(z, y) = \inf L(\gamma) dM(z,y)=infL(γ)
其中 ( γ\gammaγ ) 是所有连接 ( zzz ) 和 ( yyy ) 的曲线。这使得 ( (M,dM)(M, d_M)(M,dM) ) 成为一个度量空间。

现在,假设你在点 ( zzz ),想沿着某个方向 ( v∈TzMv \in T_zMvTzM ) “直线”移动,怎么办?这就需要指数映射(exponential map)。对于初始条件 ( γ(0)=z\gamma(0) = zγ(0)=z )、( γ′(0)=v\gamma'(0) = vγ(0)=v ) 的唯一单位速度测地线 ( γ\gammaγ ),指数映射定义为:
exp⁡z(v)=γ(1) \exp_z(v) = \gamma(1) expz(v)=γ(1)
直观来说,( exp⁡z(v)\exp_z(v)expz(v) ) 把切空间的向量 ( vvv ) “映射”到流形上的一个点。比如在球面上,从北极沿某个方向移动一定距离,你会到达一个新位置。

反过来,对数映射(logarithm map)是指数映射的逆:
log⁡z(y)=exp⁡z−1(y):M→TzM \log_z(y) = \exp_z^{-1}(y): M \to T_zM logz(y)=expz1(y):MTzM
它告诉你从 ( zzz ) 到 ( yyy ) 的“方向”和“距离”。

如果流形是测地完备的(geodesically complete),即所有测地线可以无限延伸,那么 ( exp⁡z\exp_zexpz ) 在整个 ( TzMT_zMTzM ) 上都定义良好。文中提到 Poincaré 球和超球面都是测地完备的,这保证了这些操作的可靠性。

常曲率流形:Poincaré 球和超球面

Riemannian 几何的一个重要子类是常曲率流形,即曲率在整个流形上恒定。曲率衡量空间的“弯曲程度”,有三种情况:

  1. 零曲率:平面 ( Rn\mathbb{R}^nRn ),度量 ( G(z)=IG(z) = IG(z)=I ),测地线是直线。
  2. 正曲率:超球面(hypersphere),如单位球面 ( Sn={z∈Rn+1∣∥z∥=1S^n = \{ z \in \mathbb{R}^{n+1} \mid \|z\| = 1Sn={zRn+1z=1 } )。测地线是大圆,曲率恒为正。
  3. 负曲率:Poincaré 球,如单位盘 ( Bn={z∈Rn∣∥z∥<1B^n = \{ z \in \mathbb{R}^n \mid \|z\| < 1Bn={zRnz<1 } ) 配上双曲度量。测地线是圆弧,曲率恒为负。

在 Poincaré 球中,度量是 ( G(z)=4(1−∥z∥2)2IG(z) = \frac{4}{(1 - \|z\|^2)^2} IG(z)=(1z2)24I ),靠近边界时距离被放大;在超球面中,度量继承自欧几里得空间的嵌入。这些几何特性直接影响测地线和距离计算。

为什么关心这些?

在 RCNFs 中,Riemannian 几何提供了在流形上定义概率分布的工具。基分布的“粒子”通过向量场演化,而向量场和数值求解器必须尊重流形的度量和测地线。这比传统的投影方法(从欧几里得空间映射到流形)更自然,也更稳定。

比如:

  • 在超球面上模拟地震位置分布,测地线是大圆,指数映射帮你导航。
  • 在 Poincaré 球上建模层次数据,负曲率让分布自然展开。
总结

Riemannian 几何用流形 ( MMM ) 和度量 ( ggg ) 描述弯曲空间,切空间 ( TzMT_zMTzM ) 定义方向,测地线和指数映射提供“直线”和“导航”。对于常曲率流形如 Poincaré 球和超球面,这些工具让概率建模更贴合数据的内在几何。


数学符号解释

( TzM×TzM→RT_zM \times T_zM \to \mathbb{R}TzM×TzMR ) 是什么意思?

首先,( TzMT_zMTzM) 是流形 ( MMM ) 在点 ( zzz ) 处的切空间(tangent space)。它是一个向量空间,包含所有从 ( zzz ) 点出发的“切向方向”。比如,在一个二维球面上,( TzMT_zMTzM ) 是一个二维平面,里面的向量可以表示东南西北方向的组合。

( TzM×TzMT_zM \times T_zMTzM×TzM ) 表示两个切空间的笛卡尔积。在数学上,( A×BA \times BA×B ) 是集合 ( AAA ) 和 ( BBB ) 的所有有序对 ( (a,b)(a, b)(a,b) ) 的集合。所以:

  • ( TzM×TzM={(u,v)∣u∈TzM,v∈TzM}T_zM \times T_zM = \{ (u, v) \mid u \in T_zM, v \in T_zM \}TzM×TzM={(u,v)uTzM,vTzM} )
  • 意思是:取 ( TzMT_zMTzM ) 中的任意两个向量 ( uuu ) 和 ( vvv ),组成一个有序对 ( (u,v)(u, v)(u,v) )。

接下来,( TzM×TzM→RT_zM \times T_zM \to \mathbb{R}TzM×TzMR ) 表示一个映射(函数),它把 ( TzM×TzMT_zM \times T_zMTzM×TzM ) 中的每一个有序对 ( (u,v)(u, v)(u,v) ) 映射到一个实数 ( R\mathbb{R}R )。这个映射就是 Riemannian 度量 ( g(z) ) 的作用。具体来说:

  • 输入:一对切向量 ( (u,v)(u, v)(u,v) )。
  • 输出:一个实数,表示 ( uuu ) 和 ( vvv ) 在点 ( zzz ) 处的“内积”。

这里的“相乘”并不是 ( uuu ) 和 ( vvv ) 向量直接相乘(比如点积或叉积),而是指 ( g(z)g(z)g(z) ) 作为一个工具,作用于 ( uuu ) 和 ( vvv ),计算它们之间的某种“关系”——这个关系就是内积。


( g(z)(u,v)g(z)(u, v)g(z)(u,v) ) 是什么意思?

( g(z)g(z)g(z) ) 是流形 (MMM ) 在点 ( zzz ) 处的 度量张量(metric tensor)。它是一个双线性函数,定义在切空间 ( TzMT_zMTzM ) 上。让我们分解一下:

  1. ( g(z)g(z)g(z) ) 的本质

    • ( g(z)g(z)g(z) ) 是一个函数,它依赖于点 ( zzz ),因为流形的几何性质(如曲率)可能随位置变化。
    • 它的输入是两个切向量 ( u,v∈TzMu, v \in T_zMu,vTzM ),输出是一个实数。
    • 数学上,( g(z):TzM×TzM→Rg(z): T_zM \times T_zM \to \mathbb{R}g(z):TzM×TzMR ) 表示 ( g(z)g(z)g(z) ) 是一个从 ( TzM×TzMT_zM \times T_zMTzM×TzM ) 到实数的映射。
  2. ( g(z)(u,v)g(z)(u, v)g(z)(u,v) ) 的写法

    • ( g(z)(u,v)g(z)(u, v)g(z)(u,v) ) 表示 ( g(z)g(z)g(z) ) 作用于 ( (u,v)(u, v)(u,v) ) 这个有序对。
    • 这里的括号 ( (u,v)(u, v)(u,v) ) 表示 ( uuu ) 和 ( vvv ) 是 ( g(z)g(z)g(z) ) 的两个参数,不是 ( g(z)g(z)g(z) ) 和 ( (u,v)(u, v)(u,v) ) 相乘。
    • 你可以把 ( g(z)g(z)g(z)) 想象成一个“机器”,输入 ( uuu ) 和 ( vvv ),输出一个数。这个数就是 ( uuu ) 和 ( vvv ) 在 ( zzz ) 点的内积,记作 ( ⟨u,v⟩z\langle u, v \rangle_zu,vz )。
  3. 不是相乘

    • ( g(z)(u,v)g(z)(u, v)g(z)(u,v) ) 不是 ( g(z)g(z)g(z) ) 和 ( (u,v)(u, v)(u,v) ) 的某种乘法运算,而是函数 ( g(z)g(z)g(z) ) 对输入 ( (u,v)(u, v)(u,v) ) 的计算结果。
    • 在数学中,函数作用于参数时常用这种记号,比如 ( f(x)f(x)f(x) ) 是 ( fff ) 作用于 ( xxx )。这里 ( g(z)(u,v)g(z)(u, v)g(z)(u,v) ) 是类似的写法。

内积 ( ⟨u,v⟩z=g(z)(u,v)\langle u, v \rangle_z = g(z)(u, v)u,vz=g(z)(u,v) ) 的意义

Riemannian 度量 ( g(z)g(z)g(z) ) 的核心作用是定义切空间 ( TzMT_zMTzM ) 上的内积。内积是我们熟悉的概念(比如欧几里得空间中的点积),但在流形上,它由 ( g(z)g(z)g(z) ) 定制:

  • ( ⟨u,v⟩z=g(z)(u,v)\langle u, v \rangle_z = g(z)(u, v)u,vz=g(z)(u,v)) 表示 ( uuu ) 和 ( vvv ) 在 ( zzz ) 点的内积。
  • 这个内积可以用来计算角度、长度等几何量。比如:
    • 向量 ( uuu ) 的长度:( ∥u∥z=⟨u,u⟩z=g(z)(u,u)\|u\|_z = \sqrt{\langle u, u \rangle_z} = \sqrt{g(z)(u, u)}uz=u,uz=g(z)(u,u) )。
    • ( uuu ) 和 ( vvv ) 的夹角:( cos⁡θ=⟨u,v⟩z∥u∥z∥v∥z\cos\theta = \frac{\langle u, v \rangle_z}{\|u\|_z \|v\|_z}cosθ=uzvzu,vz )。

在欧几里得空间中,内积是简单的 ( u⋅v=uTvu \cdot v = u^T vuv=uTv ),但在流形上,( g(z)g(z)g(z) ) 会根据局部几何调整内积的计算方式。


用矩阵形式理解 ( g(z)g(z)g(z) )

文中提到,( g(z)g(z)g(z) ) 可以用矩阵 ( G(z)G(z)G(z) ) 表示:
⟨u,v⟩z=g(z)(u,v)=uTG(z)v \langle u, v \rangle_z = g(z)(u, v) = u^T G(z) v u,vz=g(z)(u,v)=uTG(z)v

  • ( G(z)G(z)G(z) ) 是一个对称正定矩阵,大小是 ( TzMT_zMTzM ) 的维度(比如二维流形上是个 ( 2×22 \times 22×2 ) 矩阵)。
  • ( uuu ) 和 ( vvv ) 是列向量,( uTG(z)vu^T G(z) vuTG(z)v ) 是矩阵运算,给出内积的具体值。
  • ( G(z)G(z)G(z) ) 随 ( zzz ) 变化,反映了流形在不同点的“弯曲”特性。

例如:

  • 在平面 ( R2\mathbb{R}^2R2 ) 上,( G(z)=IG(z) = IG(z)=I )(单位矩阵),内积是 ( uTvu^T vuTv )。
  • 在球面上,( G(z)G(z)G(z) ) 由球面坐标决定,可能包含 ( sin⁡θ\sin\thetasinθ ) 等项。

一个直观的例子

假设你在地球表面(一个二维球面流形)上,点 ( zzz ) 是北极:

  • ( TzMT_zMTzM ) 是北极的切平面,包含东西方向和南北方向的向量,比如 ( u=(1,0)u = (1, 0)u=(1,0))(向东),( v=(0,1)v = (0, 1)v=(0,1) )(向南)。
  • ( g(z)g(z)g(z) ) 定义了这些方向的内积。假设 ( G(z)=IG(z) = IG(z)=I )(简化假设),那么 ( g(z)(u,v)=uTv=0g(z)(u, v) = u^T v = 0g(z)(u,v)=uTv=0 ),说明东和南垂直。
  • 如果你在赤道,( G(z)G(z)G(z) ) 可能会有不同的缩放因子,因为球面曲率影响了局部几何。

回答提出的问题

  1. ( TzM×TzM→RT_zM \times T_zM \to \mathbb{R}TzM×TzMR ) 的“相乘”是什么意思?

    • 这里的“( ×\times× )”不是向量相乘,而是表示输入是两个切向量的组合(有序对)。( g(z)g(z)g(z) ) 接收这对向量,输出一个实数,不是 ( uuu ) 和 ( vvv ) 直接相乘。
  2. ( g(z)(u,v)g(z)(u, v)g(z)(u,v) ) 是 ( g(z)g(z)g(z) ) 作用于 ( uuu ) 和 ( vvv ) 吗?还是相乘?

    • 是 ( g(z)g(z)g(z) ) 作用于 ( uuu ) 和 ( vvv )。具体来说,( g(z)g(z)g(z) ) 是一个函数,( (u,v)(u, v)(u,v) ) 是它的输入,( g(z)(u,v)g(z)(u, v)g(z)(u,v) ) 是输出结果(内积值)。它不是 ( g(z)g(z)g(z) ) 和 ( (u,v)(u, v)(u,v) ) 的乘法,而是 ( g(z)g(z)g(z) ) 对 ( uuu ) 和 ( vvv ) 的“测量”。

总结

  • ( TzM×TzM→RT_zM \times T_zM \to \mathbb{R}TzM×TzMR ) 描述了 ( g(z)g(z)g(z) ) 的定义域和值域:输入是两个切向量,输出是实数。
  • ( g(z)(u,v)g(z)(u, v)g(z)(u,v) ) 是 ( g(z)g(z)g(z) ) 作用于 ( uuu ) 和 ( vvv ),计算它们在内积意义下的“关系”,用矩阵形式是 ( uTG(z)vu^T G(z) vuTG(z)v )。

例子展示 ( G(z)G(z)G(z) )的计算过程

下面会通过具体的例子来展示 ( G(z)G(z)G(z) )(Riemannian 度量的矩阵表示)的计算过程。我们会以两种常曲率流形为例:二维球面(正曲率)和 Poincaré 盘(负曲率)。这些例子会帮助你直观理解 ( G(z)G(z)G(z) ) 如何反映流形的几何特性,以及如何计算内积 ( g(z)(u,v)=uTG(z)vg(z)(u, v) = u^T G(z) vg(z)(u,v)=uTG(z)v )。


示例 1:二维球面(正曲率流形)

二维球面 ( S2S^2S2 ) 是单位球面,定义为:
S2={(x,y,z)∈R3∣x2+y2+z2=1} S^2 = \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1 \} S2={(x,y,z)R3x2+y2+z2=1}
它的维度是 2,因为表面是二维的。我们通常用球坐标 ( (θ,ϕ)(\theta, \phi)(θ,ϕ) ) 参数化:

  • (θ∈[0,π]\theta \in [0, \pi]θ[0,π] ):极角,从北极到南极。
  • ( ϕ∈[0,2π)\phi \in [0, 2\pi)ϕ[0,2π) ):方位角,绕着 z 轴转。
  • 坐标变换:
    x=sin⁡θcos⁡ϕ,y=sin⁡θsin⁡ϕ,z=cos⁡θ x = \sin\theta \cos\phi, \quad y = \sin\theta \sin\phi, \quad z = \cos\theta x=sinθcosϕ,y=sinθsinϕ,z=cosθ
切空间 ( TzS2T_z S^2TzS2 )

假设点 ( zzz ) 在球面上,用球坐标表示为 ( z=(θ0,ϕ0)z = (\theta_0, \phi_0)z=(θ0,ϕ0) )。切空间 ( TzS2T_z S^2TzS2 ) 是二维的,由两个基向量张成:

  • ( eθ=∂∂θe_\theta = \frac{\partial}{\partial \theta}eθ=θ ):沿 ( θ\thetaθ ) 方向的切向量。
  • ( eϕ=∂∂ϕe_\phi = \frac{\partial}{\partial \phi}eϕ=ϕ ):沿 ( ϕ\phiϕ ) 方向的切向量。

计算这些基向量(在 ( R3\mathbb{R}^3R3 ) 中的表示):

  • ( ∂∂θ(x,y,z)=(cos⁡θcos⁡ϕ,cos⁡θsin⁡ϕ,−sin⁡θ)\frac{\partial}{\partial \theta} (x, y, z) = (\cos\theta \cos\phi, \cos\theta \sin\phi, -\sin\theta)θ(x,y,z)=(cosθcosϕ,cosθsinϕ,sinθ) )
  • ( ∂∂ϕ(x,y,z)=(−sin⁡θsin⁡ϕ,sin⁡θcos⁡ϕ,0)\frac{\partial}{\partial \phi} (x, y, z) = (-\sin\theta \sin\phi, \sin\theta \cos\phi, 0)ϕ(x,y,z)=(sinθsinϕ,sinθcosϕ,0) )
计算 ( G(z)G(z)G(z) )

球面的度量 ( g(z)g(z)g(z) ) 继承自 ( R3\mathbb{R}^3R3 ) 的欧几里得度量,但限制在切空间上。度量张量的分量是基向量的内积:

  • ( gθθ=⟨eθ,eθ⟩=(cos⁡θcos⁡ϕ)2+(cos⁡θsin⁡ϕ)2+(−sin⁡θ)2=cos⁡2θ(cos⁡2ϕ+sin⁡2ϕ)+sin⁡2θ=1g_{\theta\theta} = \langle e_\theta, e_\theta \rangle = (\cos\theta \cos\phi)^2 + (\cos\theta \sin\phi)^2 + (-\sin\theta)^2 = \cos^2\theta (\cos^2\phi + \sin^2\phi) + \sin^2\theta = 1gθθ=eθ,eθ=(cosθcosϕ)2+(cosθsinϕ)2+(sinθ)2=cos2θ(cos2ϕ+sin2ϕ)+sin2θ=1 )
  • ( gϕϕ=⟨eϕ,eϕ⟩=(−sin⁡θsin⁡ϕ)2+(sin⁡θcos⁡ϕ)2+0=sin⁡2θ(sin⁡2ϕ+cos⁡2ϕ)=sin⁡2θg_{\phi\phi} = \langle e_\phi, e_\phi \rangle = (-\sin\theta \sin\phi)^2 + (\sin\theta \cos\phi)^2 + 0 = \sin^2\theta (\sin^2\phi + \cos^2\phi) = \sin^2\thetagϕϕ=eϕ,eϕ=(sinθsinϕ)2+(sinθcosϕ)2+0=sin2θ(sin2ϕ+cos2ϕ)=sin2θ )
  • ( gθϕ=⟨eθ,eϕ⟩=(−cos⁡θcos⁡ϕsin⁡θsin⁡ϕ)+(cos⁡θsin⁡ϕsin⁡θcos⁡ϕ)+0=0g_{\theta\phi} = \langle e_\theta, e_\phi \rangle = (-\cos\theta \cos\phi \sin\theta \sin\phi) + (\cos\theta \sin\phi \sin\theta \cos\phi) + 0 = 0gθϕ=eθ,eϕ=(cosθcosϕsinθsinϕ)+(cosθsinϕsinθcosϕ)+0=0 )

所以,度量矩阵 ( G(z)G(z)G(z) ) 在 ( (θ,ϕ)(\theta, \phi)(θ,ϕ) ) 坐标下是:
G(z)=(gθθgθϕgϕθgϕϕ)=(100sin⁡2θ) G(z) = \begin{pmatrix} g_{\theta\theta} & g_{\theta\phi} \\ g_{\phi\theta} & g_{\phi\phi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \sin^2\theta \end{pmatrix} G(z)=(gθθgϕθgθϕgϕϕ)=(100sin2θ)

内积计算

假设有两个切向量 ( u=uθeθ+uϕeϕu = u_\theta e_\theta + u_\phi e_\phiu=uθeθ+uϕeϕ ),( v=vθeθ+vϕeϕv = v_\theta e_\theta + v_\phi e_\phiv=vθeθ+vϕeϕ ),用坐标表示为 ( u=(uθ,uϕ)u = (u_\theta, u_\phi)u=(uθ,uϕ) ),( v=(vθ,vϕ)v = (v_\theta, v_\phi)v=(vθ,vϕ) )。内积是:
g(z)(u,v)=uTG(z)v=(uθuϕ)(100sin⁡2θ)(vθvϕ)=uθvθ+sin⁡2θuϕvϕ g(z)(u, v) = u^T G(z) v = \begin{pmatrix} u_\theta & u_\phi \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \sin^2\theta \end{pmatrix} \begin{pmatrix} v_\theta \\ v_\phi \end{pmatrix} = u_\theta v_\theta + \sin^2\theta u_\phi v_\phi g(z)(u,v)=uTG(z)v=(uθuϕ)(100sin2θ)(vθvϕ)=uθvθ+sin2θuϕvϕ

例子

在赤道 ( θ=π2\theta = \frac{\pi}{2}θ=2π ):

  • ( G(z)=(1001)G(z) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}G(z)=(1001) )(因为 ( sin⁡2π2=1\sin^2\frac{\pi}{2} = 1sin22π=1 ))。
  • 若 ( u=(1,0)u = (1, 0)u=(1,0) ),( v=(0,1)v = (0, 1)v=(0,1) ),则 ( g(z)(u,v)=1⋅0+1⋅0=0g(z)(u, v) = 1 \cdot 0 + 1 \cdot 0 = 0g(z)(u,v)=10+10=0 ),说明 ( θ\thetaθ ) 和 ( ϕ\phiϕ ) 方向正交。
  • 若 ( u=(1,1)u = (1, 1)u=(1,1) ),则 ( ∥u∥z=1⋅1+1⋅1=2\|u\|_z = \sqrt{1 \cdot 1 + 1 \cdot 1} = \sqrt{2}uz=11+11=2 )。

在北极 ( θ=0\theta = 0θ=0 ):

  • ( G(z)=(1000)G(z) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}G(z)=(1000) )(因为 ( sin⁡20=0\sin^2 0 = 0sin20=0 )),( ϕ\phiϕ ) 方向的长度被压缩为 0,符合北极的几何。

示例 2:Poincaré 盘(负曲率流形)

Poincaré 盘是二维双曲空间,定义为单位圆盘:
B2={(x,y)∈R2∣x2+y2<1} B^2 = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1 \} B2={(x,y)R2x2+y2<1}
配上度量:
ds2=4(dx2+dy2)(1−x2−y2)2 ds^2 = \frac{4 (dx^2 + dy^2)}{(1 - x^2 - y^2)^2} ds2=(1x2y2)24(dx2+dy2)

切空间 ( TzB2T_z B^2TzB2 )

在点 ( z=(x,y)z = (x, y)z=(x,y) ),切空间 ( TzB2T_z B^2TzB2 ) 是二维的,用直角坐标基向量 ( ex=(1,0)e_x = (1, 0)ex=(1,0) )、( ey=(0,1)e_y = (0, 1)ey=(0,1) ) 表示。

计算 ( G(z)G(z)G(z) )

度量的线元素 ( ds2ds^2ds2 ) 表明:

  • ( gxx=4(1−x2−y2)2g_{xx} = \frac{4}{(1 - x^2 - y^2)^2}gxx=(1x2y2)24 )
  • ( gyy=4(1−x2−y2)2g_{yy} = \frac{4}{(1 - x^2 - y^2)^2}gyy=(1x2y2)24 )
  • ( gxy=0g_{xy} = 0gxy=0 )(因为没有交叉项)

所以:
G(z)=4(1−x2−y2)2(1001)=(4(1−r2)2004(1−r2)2) G(z) = \frac{4}{(1 - x^2 - y^2)^2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{4}{(1 - r^2)^2} & 0 \\ 0 & \frac{4}{(1 - r^2)^2} \end{pmatrix} G(z)=(1x2y2)24(1001)=((1r2)2400(1r2)24)
其中 ( r2=x2+y2r^2 = x^2 + y^2r2=x2+y2 )。

内积计算

对于 ( u=(ux,uy)u = (u_x, u_y)u=(ux,uy) ),( v=(vx,vy)v = (v_x, v_y)v=(vx,vy)):
g(z)(u,v)=uTG(z)v=4(1−r2)2(uxvx+uyvy) g(z)(u, v) = u^T G(z) v = \frac{4}{(1 - r^2)^2} (u_x v_x + u_y v_y) g(z)(u,v)=uTG(z)v=(1r2)24(uxvx+uyvy)

例子

在原点 ( z=(0,0)z = (0, 0)z=(0,0) ):

  • ( r=0r = 0r=0 ),( G(z)=4(1001)G(z) = 4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}G(z)=4(1001) )。
  • 若 (u=(1,0)u = (1, 0)u=(1,0) ),( v=(0,1)v = (0, 1)v=(0,1) ),则 ( g(z)(u,v)=4(1⋅0+0⋅1)=0g(z)(u, v) = 4 (1 \cdot 0 + 0 \cdot 1) = 0g(z)(u,v)=4(10+01)=0 )。
  • 若 ( u=(1,0)u = (1, 0)u=(1,0) ),则 ( ∥u∥z=4⋅1=2\|u\|_z = \sqrt{4 \cdot 1} = 2uz=41=2 )。

靠近边界 ( z=(0.9,0)z = (0.9, 0)z=(0.9,0) ):

  • ( r=0.9r = 0.9r=0.9 ),( 1−r2=0.191 - r^2 = 0.191r2=0.19 ),( G(z)=40.192(1001)≈110.8(1001)G(z) = \frac{4}{0.19^2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \approx 110.8 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}G(z)=0.1924(1001)110.8(1001) )。
  • 若 ( u=(1,0)u = (1, 0)u=(1,0) ),则 ( ∥u∥z=110.8≈10.5\|u\|_z = \sqrt{110.8} \approx 10.5uz=110.810.5 ),长度被放大,符合双曲几何。

总结

  • 球面:( G(z)=(100sin⁡2θ)G(z) = \begin{pmatrix} 1 & 0 \\ 0 & \sin^2\theta \end{pmatrix}G(z)=(100sin2θ) ),反映了球面在极点和赤道的几何变化。
  • Poincaré 盘:( G(z)=4(1−r2)2IG(z) = \frac{4}{(1 - r^2)^2} IG(z)=(1r2)24I ),靠近边界时度量放大,体现负曲率。

( G(z)G(z)G(z) ) 的计算依赖于流形的参数化和度量定义,直接决定了内积和距离的性质。希望这些例子让你对 ( g(z)g(z)g(z) ) 和 ( G(z)G(z)G(z) ) 的作用更清晰!

勒贝格测度(Lebesgue measure)

以下详细介绍勒贝格测度(Lebesgue measure)的概念,面向对数学和深度学习有一定基础的读者。会从直观理解出发,逐步深入到数学定义和公式,并联系到 Riemannian 流形中的应用场景(比如 ( dVol(z)=∣G(z)∣dLeb(z)dVol(z) = \sqrt{|G(z)|} dLeb(z)dVol(z)=G(z)dLeb(z) )),让你明白它在度量和积分中的作用。


什么是勒贝格测度?从长度到体积的数学尺子

在 Riemannian 几何中,我们提到流形的度量 ( g(z)g(z)g(z) ) 诱导了一个测度 ( dVol(z)=∣G(z)∣dLeb(z)dVol(z) = \sqrt{|G(z)|} dLeb(z)dVol(z)=G(z)dLeb(z) ),其中 ( dLeb(z)dLeb(z)dLeb(z) ) 是“勒贝格测度”。如果你听到这个名字觉得有点陌生,别慌!今天我们就来聊聊勒贝格测度是什么,它怎么工作,以及为什么它在流形和概率建模中这么重要。准备好进入数学的奇妙世界了吗?

测度:给集合“量尺寸”的工具

在数学中,测度(measure)是一个函数,用来给集合分配一个“大小”——可以是长度、面积、体积,甚至更高维的“量”。比如:

  • 一条线段的长度是 2。
  • 一个矩形的面积是 3 × 4 = 12。
  • 一个球的体积是 ( 43πr3\frac{4}{3} \pi r^334πr3 )。

但这些简单的例子都假设空间是规则的、直观的。如果空间是弯曲的(比如球面),或者集合很复杂(比如分形),我们需要更强大的工具。这时候,勒贝格测度就登场了。

从 Riemann 积分到勒贝格积分

我们先从积分说起,因为勒贝格测度的诞生和积分密切相关。你可能学过 Riemann 积分(黎曼积分),它把一个函数的积分想象成“把区间分成小块,计算每块的高度,再求和”。比如计算 ( f(x)=x2f(x) = x^2f(x)=x2 ) 在 ( [0,1][0, 1][0,1] ) 上的积分:

  • 把 ( [0,1][0, 1][0,1] ) 分成 ( nnn ) 个小区间,每块宽度 ( Δx=1n\Delta x = \frac{1}{n}Δx=n1 )。
  • 每块的高度近似取 ( f(xi)f(x_i)f(xi) ),面积和是 ( ∑f(xi)Δx\sum f(x_i) \Delta xf(xi)Δx )。
  • 当 ( n→∞n \to \inftyn ) 时,得到精确值 ( ∫01x2 dx=13\int_0^1 x^2 \, dx = \frac{1}{3}01x2dx=31 )。

Riemann 积分简单直观,但有个问题:它要求函数“足够连续”,而且只能处理规则的区间。如果函数跳跃得很厉害,或者我们想积分的区域很奇怪(比如 Cantor 集),Riemann 积分就力不从心了。

勒贝格积分(Lebesgue 积分)换了个思路:不是按 ( xxx ) 轴分割区间,而是按函数值的高度分割,然后测量每个高度对应的“区域大小”。这需要一个新的测度工具——勒贝格测度。

勒贝格测度的直观定义

勒贝格测度 ( dLeb ) 是欧几里得空间 ( Rn\mathbb{R}^nRn ) 上的一种“标准测度”,用来量化集合的“大小”:

  • 在 ( R\mathbb{R}R )(一维)上,它测量线段的长度。
  • 在 ( R2\mathbb{R}^2R2 )(二维)上,它测量矩形或圆的面积。
  • 在 ( R3\mathbb{R}^3R3 )(三维)上,它测量立方体或球的体积。

它的核心思想是用外测度(outer measure)逼近任何集合的大小,即使集合很复杂。具体来说:

  1. 用简单的矩形(或立方体)覆盖你要测量的集合。
  2. 计算这些矩形的总大小。
  3. 取所有可能覆盖的最小值,作为集合的测度。
数学定义

在 ( Rn\mathbb{R}^nRn ) 上,勒贝格测度的正式定义基于可测集合(measurable sets)。先定义基本集合的测度:

  • 对于一个 ( nnn ) 维矩形 ( I=[a1,b1]×[a2,b2]×⋯×[an,bn]I = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]I=[a1,b1]×[a2,b2]××[an,bn] ):
    μ(I)=(b1−a1)⋅(b2−a2)⋅…⋅(bn−an) \mu(I) = (b_1 - a_1) \cdot (b_2 - a_2) \cdot \ldots \cdot (b_n - a_n) μ(I)=(b1a1)(b2a2)(bnan)
    这是矩形的“体积”。

然后,对于任意集合 ( A⊂RnA \subset \mathbb{R}^nARn ):

  • 外测度
    μ∗(A)=inf⁡{∑i=1∞μ(Ii)∣A⊂⋃i=1∞Ii,Ii 是矩形} \mu^*(A) = \inf \left\{ \sum_{i=1}^\infty \mu(I_i) \mid A \subset \bigcup_{i=1}^\infty I_i, I_i \text{ 是矩形} \right\} μ(A)=inf{i=1μ(Ii)Ai=1Ii,Ii 是矩形}
    意思是用无数个矩形覆盖 ( AAA ),取所有覆盖体积和的最小值。
  • ( AAA ) 是勒贝格可测的,如果它满足 Carathéodory 准则(简单说,就是分割集合时测度加起来一致)。
  • 如果 ( AAA ) 可测,则勒贝格测度 ( μ(A)=μ∗(A)\mu(A) = \mu^*(A)μ(A)=μ(A) )。

在微分形式下,勒贝格测度记作 ( dLeb(x)dLeb(x)dLeb(x) ) 或 ( dxdxdx )(一维时),表示“无穷小的标准测度元素”。

例子
  1. 一维

    • 区间 ( [0,1][0, 1][0,1]) 的勒贝格测度是 ( μ([0,1])=1−0=1\mu([0, 1]) = 1 - 0 = 1μ([0,1])=10=1 )。
    • 单点 ({0}\{0\}{0} ) 的测度是 0(因为没有长度)。
    • 有理数集 ( Q∩[0,1]\mathbb{Q} \cap [0, 1]Q[0,1] ) 的测度是 0(虽然点无穷多,但它们“稀疏”,可以用很小的矩形覆盖,总长度趋于 0)。
  2. 二维

    • 单位正方形 ( [0,1]×[0,1][0, 1] \times [0, 1][0,1]×[0,1] ) 的测度是 ( 1×1=11 \times 1 = 11×1=1 )。
    • 单位圆盘 ( {(x,y)∣x2+y2≤1}\{ (x, y) \mid x^2 + y^2 \leq 1 \}{(x,y)x2+y21} ) 的测度是 ( π\piπ )。
在 Riemannian 流形中的角色

回到 Riemannian 流形 ( (M,g)(M, g)(M,g) )。在欧几里得空间 ( Rn\mathbb{R}^nRn ) 上,勒贝格测度 ( dLeb(z)dLeb(z)dLeb(z) ) 是默认的“平坦”测度。但流形可能是弯曲的,度量 ( g(z)g(z)g(z) )(矩阵形式 ( G(z)G(z)G(z) ))会扭曲空间的几何。这时,流形上的体积元素需要调整:
dVol(z)=∣G(z)∣dLeb(z) dVol(z) = \sqrt{|G(z)|} dLeb(z) dVol(z)=G(z)dLeb(z)

  • ( G(z)G(z)G(z) ) 是度量张量的矩阵表示,( ∣G(z)∣|G(z)|G(z) ) 是它的行列式。
  • ( ∣G(z)∣\sqrt{|G(z)|}G(z) ) 是“缩放因子”,反映局部几何对标准测度的调整。
举例:二维球面

在单位球面 ( S2S^2S2 ) 上,用球坐标 ( (θ,ϕ)(\theta, \phi)(θ,ϕ)):

  • ( G(z)=(100sin⁡2θ)G(z) = \begin{pmatrix} 1 & 0 \\ 0 & \sin^2\theta \end{pmatrix}G(z)=(100sin2θ) )(见之前的例子)。
  • ( ∣G(z)∣=1⋅sin⁡2θ=sin⁡2θ|G(z)| = 1 \cdot \sin^2\theta = \sin^2\thetaG(z)=1sin2θ=sin2θ )。
  • 体积元素:
    dVol(z)=sin⁡2θdLeb(θ,ϕ)=sin⁡θ dθdϕ dVol(z) = \sqrt{\sin^2\theta} dLeb(\theta, \phi) = \sin\theta \, d\theta d\phi dVol(z)=sin2θdLeb(θ,ϕ)=sinθdθdϕ
    (这里 ( dLeb(θ,ϕ)=dθdϕdLeb(\theta, \phi) = d\theta d\phidLeb(θ,ϕ)=dθdϕ ) 是 ( R2\mathbb{R}^2R2 ) 上的勒贝格测度,( sin⁡θ\sin\thetasinθ ) 是球面几何的调整因子。)
  • 整个球面的面积:
    ∫S2dVol=∫02π∫0πsin⁡θ dθdϕ=2π⋅2=4π \int_{S^2} dVol = \int_0^{2\pi} \int_0^\pi \sin\theta \, d\theta d\phi = 2\pi \cdot 2 = 4\pi S2dVol=02π0πsinθdθdϕ=2π2=4π
    符合单位球面的面积。
举例:Poincaré 盘

在单位盘 ( B2B^2B2 ) 上,( G(z)=4(1−r2)2IG(z) = \frac{4}{(1 - r^2)^2} IG(z)=(1r2)24I ):

  • ( ∣G(z)∣=(4(1−r2)2)2=16(1−r2)4|G(z)| = \left( \frac{4}{(1 - r^2)^2} \right)^2 = \frac{16}{(1 - r^2)^4}G(z)=((1r2)24)2=(1r2)416 )。
  • 体积元素:
    dVol(z)=16(1−r2)4dLeb(x,y)=4(1−r2)2dxdy dVol(z) = \sqrt{\frac{16}{(1 - r^2)^4}} dLeb(x, y) = \frac{4}{(1 - r^2)^2} dx dy dVol(z)=(1r2)416dLeb(x,y)=(1r2)24dxdy
    靠近边界 ( r→1r \to 1r1 ) 时,( dVoldVoldVol ) 变得很大,反映双曲空间的“扩张”特性。
为什么用勒贝格测度?
  1. 普适性:勒贝格测度是 ( Rn\mathbb{R}^nRn ) 上的标准测度,自然延伸到流形上的局部坐标。
  2. 积分能力:它支持勒贝格积分,能处理复杂的集合和函数,在概率密度估计(如 normalizing flows)中至关重要。
  3. 几何调整:结合 ( ∣G(z)∣\sqrt{|G(z)|}G(z) ),它适配了流形的弯曲特性。
总结

勒贝格测度 ( dLeb(z)dLeb(z)dLeb(z) ) 是欧几里得空间的标准“尺子”,测量集合的大小。在 Riemannian 流形中,它被度量 ( G(z)G(z)G(z) ) 调整为 ( dVol(z)dVol(z)dVol(z) ),成为计算体积、定义概率分布的基础。无论是球面的 ( sin⁡θ\sin\thetasinθ ),还是双曲盘的 ( 4(1−r2)2\frac{4}{(1 - r^2)^2}(1r2)24 ),勒贝格测度都默默地扮演着“基底”的角色。

详细解释测地线

想深入了解测地线(geodesic)的计算,我们来详细探讨一下 Riemannian 流形上的测地线是什么,如何计算,以及具体的例子。会从概念入手,推导数学公式,并以二维球面和 Poincaré 盘为例,展示测地线的计算过程。这会帮助你理解文中提到的“测地线是流形上两点间的最短路径”以及指数映射的意义。


测地线:流形上的“直线”

在 Riemannian 几何中,测地线是流形上两点间的最短路径,类似于欧几里得空间中的直线。但因为流形可能是弯曲的,测地线的计算需要考虑度量 ( g(z)g(z)g(z) ) 的影响。测地线不仅在几何中有重要意义,在 normalizing flows(如 RCNFs)中也用来定义粒子沿流形的“自然移动”路径。

测地线的定义

测地线 ( γ(t)\gamma(t)γ(t) ) 是一条曲线,满足:

  1. 最短路径:对于两点 ( z,y∈Mz, y \in Mz,yM ),( γ(0)=z\gamma(0) = zγ(0)=z ),( γ(1)=y\gamma(1) = yγ(1)=y ),其长度 ( L(γ)=∫01∥γ′(t)∥γ(t) dtL(\gamma) = \int_0^1 \|\gamma'(t)\|_{\gamma(t)} \, dtL(γ)=01γ(t)γ(t)dt ) 是所有连接 ( zzz ) 和 ( yyy ) 的曲线中最小的。
  2. 常速:通常要求 ( ∥γ′(t)∥γ(t)=常数\|\gamma'(t)\|_{\gamma(t)} = \text{常数}γ(t)γ(t)=常数 ),即速度在流形上均匀。
  3. 局部直:测地线是“局部最直”的曲线,满足一个微分方程(测地线方程)。

长度定义为:
L(γ)=∫01g(γ(t))(γ′(t),γ′(t)) dt L(\gamma) = \int_0^1 \sqrt{g(\gamma(t))(\gamma'(t), \gamma'(t))} \, dt L(γ)=01g(γ(t))(γ(t),γ(t))dt
其中 ( γ′(t)=dγdt\gamma'(t) = \frac{d\gamma}{dt}γ(t)=dtdγ ) 是切向量,( ggg ) 是度量。

测地线方程

测地线的数学描述来自变分法:它是最短路径的极值曲线。推导后,测地线满足以下二阶微分方程(测地线方程):
d2γkdt2+∑i,jΓijkdγidtdγjdt=0,k=1,…,n \frac{d^2 \gamma^k}{dt^2} + \sum_{i,j} \Gamma^k_{ij} \frac{d\gamma^i}{dt} \frac{d\gamma^j}{dt} = 0, \quad k = 1, \dots, n dt2d2γk+i,jΓijkdtdγidtdγj=0,k=1,,n

  • ( γ(t)=(γ1(t),…,γn(t))\gamma(t) = (\gamma^1(t), \dots, \gamma^n(t))γ(t)=(γ1(t),,γn(t)) ) 是局部坐标中的曲线。
  • ( Γijk\Gamma^k_{ij}Γijk ) 是 Christoffel 符号(连接系数),由度量 ( gijg_{ij}gij ) 计算:
    Γijk=12∑mgkm(∂gmj∂xi+∂gmi∂xj−∂gij∂xm) \Gamma^k_{ij} = \frac{1}{2} \sum_m g^{km} \left( \frac{\partial g_{mj}}{\partial x^i} + \frac{\partial g_{mi}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^m} \right) Γijk=21mgkm(xigmj+xjgmixmgij)
    其中 ( gkmg^{km}gkm ) 是度量矩阵 ( G(z)G(z)G(z) ) 的逆矩阵 ( G−1(z)G^{-1}(z)G1(z) ) 的元素。

这个方程看起来复杂,但它描述了测地线如何“适应”流形的曲率。


示例 1:二维球面 ( S2S^2S2 ) 的测地线

单位球面 ( S2={(x,y,z)∣x2+y2+z2=1}S^2 = \{ (x, y, z) \mid x^2 + y^2 + z^2 = 1 \}S2={(x,y,z)x2+y2+z2=1} ),用球坐标 ( (θ,ϕ)(\theta, \phi)(θ,ϕ) ):

  • 度量:( G(z)=(100sin⁡2θ)G(z) = \begin{pmatrix} 1 & 0 \\ 0 & \sin^2\theta \end{pmatrix}G(z)=(100sin2θ) )。
计算 Christoffel 符号

设坐标 ( x1=θx^1 = \thetax1=θ ),( x2=ϕx^2 = \phix2=ϕ ),度量分量 ( g11=1g_{11} = 1g11=1 ),( g22=sin⁡2θg_{22} = \sin^2\thetag22=sin2θ ),( g12=g21=0g_{12} = g_{21} = 0g12=g21=0 )。逆矩阵 ( g11=1g^{11} = 1g11=1 ),( g22=1sin⁡2θg^{22} = \frac{1}{\sin^2\theta}g22=sin2θ1 ),( g12=0g^{12} = 0g12=0 )。

计算非零的 Christoffel 符号:

  • ( Γij1\Gamma^1_{ij}Γij1 ):
    • ( Γ111=12g11(∂g11∂θ+∂g11∂θ−∂g11∂θ)=0\Gamma^1_{11} = \frac{1}{2} g^{11} \left( \frac{\partial g_{11}}{\partial \theta} + \frac{\partial g_{11}}{\partial \theta} - \frac{\partial g_{11}}{\partial \theta} \right) = 0Γ111=21g11(θg11+θg11θg11)=0 )(因为 ( g11=1g_{11} = 1g11=1 ) 是常数)。
    • ( Γ221=12g11(∂g22∂θ)=12⋅1⋅∂sin⁡2θ∂θ=sin⁡θcos⁡θ\Gamma^1_{22} = \frac{1}{2} g^{11} \left( \frac{\partial g_{22}}{\partial \theta} \right) = \frac{1}{2} \cdot 1 \cdot \frac{\partial \sin^2\theta}{\partial \theta} = \sin\theta \cos\thetaΓ221=21g11(θg22)=211θsin2θ=sinθcosθ )。
  • (Γij2\Gamma^2_{ij}Γij2 ):
    • ( Γ122=Γ212=12g22(∂g22∂θ)=12⋅1sin⁡2θ⋅2sin⁡θcos⁡θ=cos⁡θsin⁡θ\Gamma^2_{12} = \Gamma^2_{21} = \frac{1}{2} g^{22} \left( \frac{\partial g_{22}}{\partial \theta} \right) = \frac{1}{2} \cdot \frac{1}{\sin^2\theta} \cdot 2 \sin\theta \cos\theta = \frac{\cos\theta}{\sin\theta}Γ122=Γ212=21g22(θg22)=21sin2θ12sinθcosθ=sinθcosθ ).

其他项为 0。

测地线方程

d2θdt2+Γ221(dϕdt)2=0⇒d2θdt2+sin⁡θcos⁡θ(dϕdt)2=0 \frac{d^2\theta}{dt^2} + \Gamma^1_{22} \left( \frac{d\phi}{dt} \right)^2 = 0 \quad \Rightarrow \quad \frac{d^2\theta}{dt^2} + \sin\theta \cos\theta \left( \frac{d\phi}{dt} \right)^2 = 0 dt2d2θ+Γ221(dtdϕ)2=0dt2d2θ+sinθcosθ(dtdϕ)2=0
d2ϕdt2+2Γ122dθdtdϕdt=0⇒d2ϕdt2+2cos⁡θsin⁡θdθdtdϕdt=0 \frac{d^2\phi}{dt^2} + 2 \Gamma^2_{12} \frac{d\theta}{dt} \frac{d\phi}{dt} = 0 \quad \Rightarrow \quad \frac{d^2\phi}{dt^2} + 2 \frac{\cos\theta}{\sin\theta} \frac{d\theta}{dt} \frac{d\phi}{dt} = 0 dt2d2ϕ+2Γ122dtdθdtdϕ=0dt2d2ϕ+2sinθcosθdtdθdtdϕ=0

解:大圆

假设 ( θ=π2\theta = \frac{\pi}{2}θ=2π )(赤道平面),则:

  • 第一方程:( d2θdt2=0\frac{d^2\theta}{dt^2} = 0dt2d2θ=0 ),( θ=π2\theta = \frac{\pi}{2}θ=2π ) 是解。
  • 第二方程:( d2ϕdt2=0\frac{d^2\phi}{dt^2} = 0dt2d2ϕ=0 )(因为 ( cos⁡π2=0\cos\frac{\pi}{2} = 0cos2π=0 )),( ϕ=at+b\phi = at + bϕ=at+b )。

在 ( R3\mathbb{R}^3R3 ) 中,( θ=π2\theta = \frac{\pi}{2}θ=2π ) 对应 ( z=0z = 0z=0 ),( x=cos⁡(at+b)x = \cos(at + b)x=cos(at+b) ),( y=sin⁡(at+b)y = \sin(at + b)y=sin(at+b) ),这是一个大圆(赤道)。一般情况下,球面上的测地线都是大圆,连接两点的最短路径。


示例 2:Poincaré 盘 ( B2B^2B2 ) 的测地线

单位盘 ( B2={(x,y)∣x2+y2<1B^2 = \{ (x, y) \mid x^2 + y^2 < 1B2={(x,y)x2+y2<1 } ),度量:
G(z)=4(1−x2−y2)2(1001) G(z) = \frac{4}{(1 - x^2 - y^2)^2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} G(z)=(1x2y2)24(1001)
设 ( λ=21−x2−y2\lambda = \frac{2}{1 - x^2 - y^2}λ=1x2y22 ),则 ( g11=g22=λ2g_{11} = g_{22} = \lambda^2g11=g22=λ2 ),( g12=0g_{12} = 0g12=0 )。

计算 Christoffel 符号
  • ( ∂g11∂x=∂∂x(4(1−x2−y2)2)=82x(1−x2−y2)3=16x(1−r2)3\frac{\partial g_{11}}{\partial x} = \frac{\partial}{\partial x} \left( \frac{4}{(1 - x^2 - y^2)^2} \right) = 8 \frac{2x}{(1 - x^2 - y^2)^3} = \frac{16x}{(1 - r^2)^3}xg11=x((1x2y2)24)=8(1x2y2)32x=(1r2)316x )(( r2=x2+y2r^2 = x^2 + y^2r2=x2+y2 ))。
  • ( ∂g11∂y=16y(1−r2)3\frac{\partial g_{11}}{\partial y} = \frac{16y}{(1 - r^2)^3}yg11=(1r2)316y )。
  • (g11=g22=(1−r2)24g^{11} = g^{22} = \frac{(1 - r^2)^2}{4}g11=g22=4(1r2)2 )。

计算:

  • ( Γ111=12g11(2∂g11∂x)=12⋅(1−r2)24⋅32x(1−r2)3=4x1−r2\Gamma^1_{11} = \frac{1}{2} g^{11} \left( 2 \frac{\partial g_{11}}{\partial x} \right) = \frac{1}{2} \cdot \frac{(1 - r^2)^2}{4} \cdot \frac{32x}{(1 - r^2)^3} = \frac{4x}{1 - r^2}Γ111=21g11(2xg11)=214(1r2)2(1r2)332x=1r24x )。
  • ( Γ121=4y1−r2\Gamma^1_{12} = \frac{4y}{1 - r^2}Γ121=1r24y ),( Γ222=4y1−r2\Gamma^2_{22} = \frac{4y}{1 - r^2}Γ222=1r24y )。
测地线方程

d2xdt2+4x1−r2(dxdt)2+4y1−r2dxdtdydt=0 \frac{d^2 x}{dt^2} + \frac{4x}{1 - r^2} \left( \frac{dx}{dt} \right)^2 + \frac{4y}{1 - r^2} \frac{dx}{dt} \frac{dy}{dt} = 0 dt2d2x+1r24x(dtdx)2+1r24ydtdxdtdy=0
d2ydt2+4x1−r2dxdtdydt+4y1−r2(dydt)2=0 \frac{d^2 y}{dt^2} + \frac{4x}{1 - r^2} \frac{dx}{dt} \frac{dy}{dt} + \frac{4y}{1 - r^2} \left( \frac{dy}{dt} \right)^2 = 0 dt2d2y+1r24xdtdxdtdy+1r24y(dtdy)2=0

解:圆弧

假设沿 ( xxx ) 轴运动,( y=0y = 0y=0 ):

  • 第二方程满足,( d2ydt2=0\frac{d^2 y}{dt^2} = 0dt2d2y=0 )。
  • 第一方程:( d2xdt2+4x1−x2(dxdt)2=0\frac{d^2 x}{dt^2} + \frac{4x}{1 - x^2} \left( \frac{dx}{dt} \right)^2 = 0dt2d2x+1x24x(dtdx)2=0 )。

这是一个非线性方程,解表明测地线是直线(在 Poincaré 盘中看起来是直线,但实际是圆弧)。一般解涉及双曲几何,测地线是圆盘内与边界正交的圆弧。


总结

  • 球面:测地线是大圆,由 ( θ\thetaθ ) 和 ( ϕ\phiϕ ) 的方程解出。
  • Poincaré 盘:测地线是圆弧,反映双曲几何的负曲率。
  • 计算关键:Christoffel 符号和二阶微分方程。

后记

2025年4月9日22点44分于上海,在grok 3大模型辅助下完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值