群、循环群、交换群

一个群(Group)是一个代数结构,它包含了一个集合以及一个在这个集合上定义的二元运算,满足以下四个主要性质。

  • 封闭性:对于群中的任意两个元素 a 和 b,通过群的二元运算,它们的组合 a * b 也必须属于该群。换句话说,运算结果不会使元素离开群。

  • 结合性:群中的二元运算是结合的,即对于任意元素 a、b 和 c,(a * b) * c = a * (b * c)。

  • 单位元素:群中存在一个特定的元素 e,称为单位元素,它满足对于群中的任何元素 a,e * a = a * e = a。

  • 逆元素:对于群中的每个元素 a,必须存在一个逆元素 a-1,使得 a * a-1 = a-1 * a = e,其中 e 是单位元素。

群的阶:群中元素个数称为群G的阶,记为|G|

群内元素a的阶(有时称为周期):使得ak = e成立的最小正整数k为元素a的阶(其中的e为这个群的单位元素)。若k不存在,则称a的阶数为无穷大。有限群的所有元素都有有限阶(证明)。

循环群

循环群是一种特殊的群,其元素由一个生成元重复作用而生成。具体来说,如果群G中存在一个元素g可以通过重复的使用二元运算(通常是乘法或加法)生成 G 中的所有元素,则群G就是循环群,元素g称为生成元。

形式化的,设(G,·)为一个群,若存在一个元素 g ∈ G,使得 G = < g > = { gk | k ∈ Z },则(G,·)形成一个循环群。群G内任意一个元素所生成的群都是循环群,而且是G的子群。

例如:模8加法群,{0,1,2,3,4,5,6,7},其中0是单位元,生成元为1,3,5,7

交换群

交换群,也被称为可交换群或阿贝尔群,是一个满足交换性质的群。交换性质意味着群中的任何两个元素在群运算下都可以交换位置,即对于所有的元素 a 和 b,a * b = b * a,其中 * 表示群运算。

经典的例子包括整数集合上的加法群(Z, +),实数集合上的加法群(R,+),以及整数集合上的乘法群(Z,*)其中 * 表示乘法。这些群都是交换群,因为它们的运算满足交换性质。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
循环群的自同构交换的证明如下: 首先,我们可以证明一个循环群的自同构只能是一个循环群或者一个交换。 假设 G 是一个循环群,生成元为 a。 对于任何一个自同构 f,由于 a 生成 G,所以 f(a) 一定也是 G 的生成元。也就是说,f(a) = a^n(n 为一个整数)。 又因为 f 是一个自同构,所以 f(a^k) = (f(a))^k = (a^n)^k = a^{nk}。 因此,f(a^k) = a^{nk},也就是说,f 通过对 G 中元素 a 的运算操作得到了一个新的循环群,它已经被确定为由 a^n 生成。这意味着,G 和 f(G) 有相同的结构。 所以,如果 G 是一个循环群,那么其自同构必须由形如 f(a) = a^n 的自同构构成。这些自同构的组合可以用一个整数 n 来表示,因此自同构是一个循环群。 现在考虑一个自同构 M,即所有从 G 到 G 自身的同构组成的集合。对于 M 中的任何两个元素 f 和 g,我们定义它们的乘积 f*g 为将 f 和 g 执行运算之后得到的函数(即 f(g(x)))。 由于这个的元素是同构,因此它们可以像普通一样进行乘法操作。如果 M 中的所有元素都是交换的,那么这个就是交换。 现在我们需要证明,循环群的自同构只能是一个循环群或者一个交换。 考虑循环群 G 和其自同构 M。由上面的分析,M 中的所有元素都可以表示为 f(a) = a^n 的形式。因此, f*g(a) = f(g(a)) = f(a^m) = (a^m)^n = a^{mn} g*f(a) = g(f(a)) = g(a^n) = (a^n)^m = a^{nm} 因此,f*g(a) = g*f(a) = a^{mn},这意味着 f*g 和 g*f 也是 a^n 的某个倍数。因此,M 中的所有元素都是交换的,所以 M 是一个交换。 因此,我们证明了循环群的自同构只能是一个循环群或者一个交换
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值