循环群和变换群

循环群

< G , ⋅ > \left<G,\cdot\right> G,是群, ∀ a ∈ G \forall a \in G aG,令 ( a ) = { a i ∣ i ∈ I } \left(a\right) = \left\{a^i|i\in\mathbb{I}\right\} (a)={aiiI}
易证 ( a ) ≤ G \left(a\right) \le G (a)G ( a ) \left(a\right) (a)称为由 a a a生成的子群
特别地,当 G = ( a ) G = \left(a\right) G=(a)时, G G G为一个具有特殊结构的群

< G , ⋅ > \left<G,\cdot\right> G,是群。若存在 a ∈ G a\in G aG,使得 G = ( a ) G = \left(a\right) G=(a),则称 G G G循环群,并称 G G G是由 a a a生成的, a a a称为 G G G生成元

例子:
(1) < I m , + m > \left<\mathbb{I}_m, +_m\right> Im,+m m m m阶循环群,生成元是 1 1 1
(2) < I , + > \left<\mathbb{I},+\right> I,+是无限阶循环群,生成元是 1 1 1 − 1 -1 1

定理1:每个循环群都是可交换的

定理2:设 G = ( a ) G=\left(a\right) G=(a)
(1)若 ∣ a ∣ \left|a\right| a无限,则 G ≅ < I , + > G\cong \left<\mathbb{I}, +\right> GI,+
(2)若 ∣ a ∣ = n ∈ I + \left|a\right| = n \in \mathbb{I}_+ a=nI+,则 G ≅ < N n , + n > G\cong \left<\mathbb{N}_n, +_n\right> GNn,+n

证明:(1)设 ∣ a ∣ \left|a\right| a无限,作 h : G → I , a i ↦ i h:G\to \mathbb{I}, a^i \mapsto i h:GI,aii
1. h h h是良定的,若 a i = a j a^i=a^j ai=aj,则 a i − j = e a^{i-j}=e aij=e,因为 ∣ a ∣ \left|a\right| a无限,所以 i − j = 0 , i = j i-j=0,i=j ij=0,i=j
2.显然 h h h双射
3. h h h同态, ∀ a i , a j ∈ G , h ( a i ⋅ a j ) = h ( a i + j ) = i + j = h ( a i ) + h ( a j ) \forall a^i,a^j\in G, h\left(a^i\cdot a^j\right) = h\left(a^{i+j}\right) = i+j=h\left(a^i\right) + h\left(a^j\right) ai,ajG,h(aiaj)=h(ai+j)=i+j=h(ai)+h(aj)
综上所述, h h h是同构, G ≅ < I , + > G\cong \left<\mathbb{I}, +\right> GI,+

(2)设 ∣ a ∣ = n \left|a\right|=n a=n,作 h : G → N n , a i ↦ i m o d    n h:G\to \mathbb{N}_n, a^i\mapsto i\mod n h:GNn,aiimodn
1. h h h是良定的,若 a i = a j a^i=a^j ai=aj a i − j = e , n ∣ ( i − j ) a^{i-j}=e, n\mid \left(i-j\right) aij=e,n(ij),所以 i m o d    n = j m o d    n i \mod n = j \mod n imodn=jmodn,即 h ( a i ) = h ( a j ) h\left(a^i\right)=h\left(a^j\right) h(ai)=h(aj)
2. h h h是单射,若 h ( a i ) = h ( a j ) h\left(a^i\right) = h\left(a^j\right) h(ai)=h(aj) i m o d    n = j m o d    n i\mod n=j\mod n imodn=jmodn,则 n ∣ ( i − j ) n\mid \left(i-j\right) n(ij),所以 a i − j = e a^{i-j}=e aij=e,故 a i = a j a^i=a^j ai=aj
3. h h h是满射, ∀ i ∈ N n , a i ∈ G , h ( a I ) = i m o d    n = i \forall i \in\mathbb{N}_n, a^i\in G, h\left(a^I\right) = i\mod n=i iNn,aiG,h(aI)=imodn=i
4. h h h是同态, ∀ a i , a j ∈ G \forall a^i,a^j\in G ai,ajG
h ( a i ⋅ a j ) = h ( a i + j ) = ( i + j ) m o d    n = ( i m o d    n ) + n ( j m o d    n ) = h ( a i ) + n h ( a j ) \begin{aligned} h\left(a^i\cdot a^j\right) &= h\left(a^{i+j}\right)\\ &=\left(i+j\right)\mod n\\ &=\left(i\mod n\right) +_n \left(j\mod n\right)\\ &=h\left(a^{i}\right) +_nh\left(a^j\right) \end{aligned} h(aiaj)=h(ai+j)=(i+j)modn=(imodn)+n(jmodn)=h(ai)+nh(aj)
综上所述, h h h是同构, G ≅ < N n , + n > G\cong \left<\mathbb{N}_n,+_n\right> GNn,+n

由本定理,同阶的循环群必同构,因此常把 n n n阶循环群记为 C n C_n Cn

推论1:设 G = ( a ) G=\left(a\right) G=(a)
(1)若 G G G为无限群,则 ∣ a ∣ \left|a\right| a无限,且 G = { ⋯   , a − 2 , a − 1 , e , a , a 2 , ⋯   } G=\left\{\cdots,a^{-2},a^{-1},e,a,a^2,\cdots\right\} G={,a2,a1,e,a,a2,}
(2)若 ∣ G ∣ = n ∈ I + \left|G\right|=n\in\mathbb{I}_+ G=nI+,则 ∣ a ∣ = n \left|a\right|=n a=n,且 G = { e , a , a 2 , ⋯   , a n − 1 } G=\left\{e,a,a^2,\cdots,a^{n-1}\right\} G={e,a,a2,,an1}

推论2:设 G G G n n n阶有限群, a ∈ G a\in G aG,则 G = ( a ) G=\left(a\right) G=(a)当且仅当 ∣ a ∣ = n \left|a\right|=n a=n

定理3:设群 G = ( a ) G=\left(a\right) G=(a)
(1)若 G G G为无限群,则 G G G只有两个生成元 a a a a − 1 a^{-1} a1
(2)若 ∣ G ∣ = n ∈ I + \left|G\right| = n\in \mathbb{I}_+ G=nI+,则 G = ( a r ) G=\left(a^r\right) G=(ar)当且仅当 ( r , n ) = 1 \left(r,n\right)=1 (r,n)=1,即生成元有 ϕ ( n ) \phi\left(n\right) ϕ(n)
其中 ϕ ( n ) = ∣ { r < n ∣ ( r , n ) = 1 } ∣ \phi\left(n\right) = \left|\left\{r<n|\left(r,n\right)=1\right\}\right| ϕ(n)={r<n(r,n)=1}称为欧拉函数

证明:
(1)容易验证 a − 1 a^{-1} a1是生成元
a m ∈ G a^m\in G amG是生成元,即 G = ( a m ) G=\left(a^m\right) G=(am)
因为 a ∈ G a\in G aG,所以 ∃ t ∈ I \exists t \in \mathbb{I} tI使得 a = ( a m ) t a=\left(a^{m}\right)^t a=(am)t,所以 a m t − 1 = e a^{mt-1}=e amt1=e
因为 G G G为无限群,所以 ∣ a ∣ \left|a\right| a无限,所以 m t − 1 = 0 mt-1=0 mt1=0,故 m = t = 1 m=t=1 m=t=1 m = t = − 1 m=t=-1 m=t=1

(2)必要性,设 G = ( a r ) G=\left(a^r\right) G=(ar),则有 ∣ a r ∣ = n \left|a^r\right|=n ar=n
另外由元素的阶-定理2, ∣ a r ∣ = n ( r , n ) \left|a^r\right| = \frac{n}{\left(r,n\right)} ar=(r,n)n,故 ( r , n ) = 1 \left(r,n\right)=1 (r,n)=1

充分性:设 ( r , n ) = 1 \left(r,n\right)=1 (r,n)=1,则由扩展欧几里得, ∃ s , t ∈ I \exists s,t\in\mathbb{I} s,tI, 使 r s + n t = 1 rs+nt=1 rs+nt=1
于是 a = a r s + n t = ( a r ) s ⋅ ( a n ) t a=a^{rs+nt}=\left(a^{r}\right)^{s}\cdot \left(a^n\right)^t a=ars+nt=(ar)s(an)t
因为 ∣ a ∣ = ∣ G ∣ = n \left|a\right| = \left|G\right|=n a=G=n,所以 a = ( a r ) s a=\left(a^r\right)^s a=(ar)s,故 G = ( a r ) G=\left(a^r\right) G=(ar)
因此 G = ( a r ) G=\left(a^r\right) G=(ar)当且仅当 ( r , n ) = 1 \left(r,n\right)=1 (r,n)=1,又 G = { e , a , a 2 , ⋯   , a n − 1 } G=\left\{e,a,a^2,\cdots, a^{n-1}\right\} G={e,a,a2,,an1}
G G G的生成元又 ϕ ( n ) \phi\left(n\right) ϕ(n)

定理4:设群 G = ( a ) , { e } ≠ H ≤ G G=\left(a\right), \left\{e\right\} \neq H \le G G=(a),{e}=HG, a m a^m am H H H a a a的最小正幂
(1) H = ( a m ) H=\left(a^m\right) H=(am)
(2)若 G G G为无限群,则 H H H为无限群
(3)若 ∣ G ∣ = n ∈ I + \left|G\right|=n\in \mathbb{I}_+ G=nI+,则 m ∣ n m\mid n mn ∣ H ∣ = n m \left|H\right|=\frac{n}{m} H=mn

证明:
(1) ∀ a i ∈ H \forall a^i \in H aiH,设 i = q m + r , ( 0 ≤ r < m ) i=qm + r,\left(0\le r < m\right) i=qm+r,(0r<m),则 a r = a i ⋅ ( a m ) − q a^r = a^{i}\cdot \left(a^m\right)^{-q} ar=ai(am)q
因为 a i , a m ∈ H a^i,a^m\in H ai,amH,所以 a r ∈ H a^r \in H arH,但是 a m a^m am H H H a a a的最小正幂,所以 r = 0 r=0 r=0
a i = ( a m ) q a^i=\left(a^m\right)^q ai=(am)q,故 H = ( a m ) H=\left(a^m\right) H=(am)
(2)若 G G G为无限群,则 ∣ a ∣ \left|a\right| a无限,所以 ∣ a m ∣ \left|a^m\right| am无限,又因为 H = ( a m ) H=\left(a^m\right) H=(am),故 H H H为无限群
(3)若 ∣ G ∣ = n \left|G\right|=n G=n,则 ∣ a ∣ = n \left|a\right|=n a=n,所以 a n = e ∈ H a^n=e\in H an=eH
因为 H = ( a m ) H=\left(a^m\right) H=(am),故 m ∣ n m\mid n mn
(由裴蜀定理, r m + n t = ( m , n ) rm + nt =\left(m,n\right) rm+nt=(m,n)有解,因此若 m ∤ n m\not\mid n mn,能找到更小的整数幂 a ( m , n ) a^{\left(m,n\right)} a(m,n),矛盾)
∣ H ∣ = ∣ a m ∣ = n ( m , n ) = n m \left|H\right|=\left|a^m\right|=\frac{n}{\left(m,n\right)}=\frac{n}{m} H=am=(m,n)n=mn

定理5:设群 G = ( a ) , ∣ G ∣ = n G=\left(a\right),\left|G\right|=n G=(a),G=n,则对于 n n n的每个正因子 d d d,有且仅有一 d d d阶子群
因此, n n n阶循环群的子群个数恰为 n n n的正因子的个数

证明: H = ( a n d ) H=\left(a^{\frac{n}{d}}\right) H=(adn)是一 d d d阶子群

H ′ = ( a m ) H^{\prime}=\left(a^m\right) H=(am)也是 d d d阶子群,则 ∣ a m ∣ = d , a m d = e \left|a^m\right|=d,a^{md}=e am=d,amd=e,所以
n ∣ m d , n d ∣ m n\mid md,\quad \frac{n}{d} \mid m nmd,dnm
所以 a m ∈ H a^{m}\in H amH,从而 H ′ ⊆ H H^{\prime}\subseteq H HH,又 ∣ H ′ ∣ = ∣ H ∣ = d \left|H^{\prime}\right|=\left|H\right|=d H=H=d,故 H ′ = H H^{\prime}=H H=H

变换群和置换群

给定一个集合 A A A < A A , ∘ > \left<A^A, \circ\right> AA,是独异点,其中 ∘ \circ 是函数合成运算
P A P_A PA A A A A A A的所有双射的集合,则 < P A , ∘ > \left<P_A,\circ\right> PA,是群,其中 1 A 1_A 1A是单位元,每个 f ∈ P A f\in P_A fPA的逆元是其逆函数 f − 1 f^{-1} f1

定义:设 A A A为集合,群 < P A , ∘ > \left<P_A,\circ\right> PA,的子群称为 A A A变换群

Cayley定理:任意一个群都与某个变换群同构

证明:设 < G , ∗ > \left<G,*\right> G,是群, ∀ a ∈ G \forall a \in G aG,作 f a : G → G , x ↦ a ∗ x f_a:G\to G, x \mapsto a * x fa:GG,xax
(1) f a f_a fa是双射
∀ x , y ∈ G \forall x,y\in G x,yG,若 f a ( x ) = f a ( y ) f_a\left(x\right) = f_a\left(y\right) fa(x)=fa(y),即 a ∗ x = a ∗ y a*x=a*y ax=ay,由消去律 x = y x=y x=y
∀ y ∈ G , f a ( a − 1 ∗ y ) = a ∗ a − 1 ∗ y = y \forall y \in G, f_a\left(a^{-1} * y\right) = a*a^{-1} * y = y yG,fa(a1y)=aa1y=y,故 f a f_a fa是满射

(2)令 G ′ = { f a ∣ a ∈ G } G^{\prime}=\left\{f_a|a\in G\right\} G={faaG},则 ∅ ≠ G ′ ⊆ P G \empty \neq G^{\prime} \subseteq P_G =GPG ∀ f a , f b ∈ G ′ , ∀ x ∈ G \forall f_a, f_b \in G^{\prime},\forall x \in G fa,fbG,xG
f a ∘ f b ( x ) = f a ( f b ( x ) ) = a ∗ ( b ∗ x ) = ( a ∗ b ) ∗ x f_a \circ f_b\left(x\right) = f_a\left(f_b\left(x\right)\right) = a * \left(b*x\right) = \left(a*b\right) * x fafb(x)=fa(fb(x))=a(bx)=(ab)x
f a ∘ f b = f a ∗ b ∈ G ′ f_a\circ f_b = f_{a*b} \in G^{\prime} fafb=fabG ∀ f a ∈ G ′ , ( f a ) − 1 = f a − 1 ∈ G ′ \forall f_a\in G^{\prime}, \left(f_a\right)^{-1} = f_{a^{-1}} \in G^{\prime} faG,(fa)1=fa1G
G ′ ≤ P G G^{\prime}\le P_G GPG < G ′ , ∘ > \left<G^{\prime}, \circ\right> G,是变换群
(3)作 ϕ : G → G ′ , a ↦ f a \phi:G\to G^{\prime}, a\mapsto f_a ϕ:GG,afa
1. ϕ \phi ϕ是单射, ∀ a , b ∈ G \forall a,b\in G a,bG,若 ϕ ( a ) = ϕ ( b ) \phi\left(a\right) = \phi\left(b\right) ϕ(a)=ϕ(b),即 f a = f b f_a=f_b fa=fb,则 f a ( e ) = f b ( e ) f_a\left(e\right) = f_b\left(e\right) fa(e)=fb(e),即 a ∗ e = b ∗ e a*e = b*e ae=be,所以 a = b a=b a=b

2.显然 ϕ \phi ϕ满射
3. ϕ \phi ϕ是同态。 ∀ a , b ∈ G , ϕ ( a ∗ b ) = f a ∗ b = f a ∘ f b = ϕ ( a ) ∘ ϕ ( b ) \forall a,b\in G, \phi\left(a*b\right) = f_{a*b}=f_a\circ f_b =\phi\left(a\right)\circ \phi\left(b\right) a,bG,ϕ(ab)=fab=fafb=ϕ(a)ϕ(b)

因此 ϕ \phi ϕ G G G G ′ G^{\prime} G的同构,故 < G , ∗ > ≅ < G ′ , ∘ > \left<G,*\right> \cong \left<G^{\prime},\circ\right> G,G,

定义:有限集合 S S S到自身的双射称为 S S S上的置换(permutation) ∣ S ∣ \left|S\right| S称为置换的阶
S S S中的元素有时亦称为文字

定义:一个包含 n n n个元素的集合上的所有置换在合成运算下构成的群称为 n n n对称群,记作 S n S_n Sn
S n S_n Sn的含有 n n n个元素的子群称为 n n n置换群
容易证明 ∣ S n ∣ = n ! \left|S_n\right|=n! Sn=n!
S = { 1 , 2 , ⋯   , n } S=\left\{1,2,\cdots, n\right\} S={1,2,,n},则 π ∈ S n \pi \in S_n πSn常表示为
π = ( 1 2 ⋯ n π ( 1 ) π ( 2 ) ⋯ π ( n ) ) \pi = \begin{pmatrix} 1& 2&\cdots&n\\ \pi\left(1\right)&\pi\left(2\right)&\cdots &\pi\left(n\right) \end{pmatrix} π=(1π(1)2π(2)nπ(n))

Cayley定理-推论:任意一个有限群都与某个置换群同构

定义:把 S S S中的元素 i 1 i_1 i1变为 i 2 i_2 i2 i 2 i_2 i2变为 i 3 i_3 i3 i k i_k ik变为 i 1 i_1 i1,并使 S S S中的其余元素保持不变的置换称为循环(cyclic permutation, cycle),也成为轮换,记为 ( i 1   i 2   ⋯   i k ) \left(i_1\ i_2\ \cdots\ i_k\right) (i1 i2  ik), k k k称为循环长度,特别地,长度为2的循环称为对换(transposition)

定理:(1)任一置换可表示成若干个无公共元素的循环之积
(2)任一置换可表示成若干对换之积,且对换个数的奇偶性不变

证明:
(1)当 n = 1 n=1 n=1的时候成立
假设 n < k n<k n<k时成立
n = k n=k n=k
1 1 1开始搜索, 1 − > π ( 1 ) − > π ( π ( 1 ) ) − > ⋯ − > 1 1->\pi\left(1\right)->\pi\left(\pi\left(1\right)\right)->\cdots ->1 1>π(1)>π(π(1))>>1
如果正好有 k k k个元素,则结束
否则这些元素构成一个循环,剩下的元素再执行这个操作

(2)
循环 ( i 1   i 2   ⋯   i k ) = ( i 1 i 2 ) ( i 1 i 2 ) ⋯ ( i 1 i k ) \left(i_1\ i_2\ \cdots\ i_k\right)=\left(i_1 i_2\right)\left(i_1 i_{2}\right)\cdots\left(i_1 i_k\right) (i1 i2  ik)=(i1i2)(i1i2)(i1ik)
由(1),任一置换可表示成若干对换之积

σ = τ 1 τ 2 ⋯ τ j = τ 1 ′ τ 2 ′ ⋯ τ k ′ \sigma=\tau_1\tau_2\cdots\tau_j=\tau_1^\prime \tau_2^\prime\cdots\tau_k^\prime σ=τ1τ2τj=τ1τ2τk
其中 σ \sigma σ为置换, τ , τ ′ \tau,\tau^{\prime} τ,τ为对换
显然对换的逆为本身
于是
( τ 1 τ 2 ⋯ τ j ) − 1 τ 1 ′ τ 2 ′ ⋯ τ k ′ = e τ j τ j − 1 ⋯ τ 1 τ 1 ′ τ 2 ′ ⋯ τ k ′ = e \begin{aligned} \left(\tau_1\tau_2\cdots\tau_j\right)^{-1}\tau_1^\prime \tau_2^\prime\cdots\tau_k^\prime &= e\\ \tau_j\tau_{j-1}\cdots\tau_1\tau_1^\prime \tau_2^\prime\cdots\tau_k^\prime &= e \end{aligned} (τ1τ2τj)1τ1τ2τkτjτj1τ1τ1τ2τk=e=e
其中 e e e为单位置换
也就是说现在只要证明恒等置换只能是偶数个对换的合成

e = π 1 π 2 ⋯ π k e=\pi_1\pi_2\cdots \pi_k e=π1π2πk,其中 π \pi π为对换
对于任意一个出现再单位置换的数字 x x x
显然 ∃ 1 ≤ h ≤ k , π h = ( x y ) \exists 1 \le h \le k,\pi_h=\left(x y\right) ∃1hk,πh=(xy) ∀ h < l ≤ k , π l ( x ) = x \forall h < l \le k, \pi_l\left(x\right)=x h<lk,πl(x)=x
(也就是说, h h h之后的对换不会影响 x x x)

接下来分一下四种情况
1:若 π h − 1 = ( x y ) \pi_{h-1}=\left(x y\right) πh1=(xy),则可以直接消去 π h , π h − 1 \pi_h,\pi_{h-1} πh,πh1,
π 1 π 2 ⋯ π h − 2 π h − 1 π h π h + 1 ⋯ π k = π 1 π 2 ⋯ π h − 2 π h + 1 ⋯ π k \pi_1\pi_2\cdots \pi_{h-2}\pi_{h-1}\pi_h\pi_{h+1}\cdots \pi_k=\pi_1\pi_2\cdots \pi_{h-2}\pi_{h+1}\cdots \pi_k π1π2πh2πh1πhπh+1πk=π1π2πh2πh+1πk
2:若 π h − 1 = ( u v ) ∧ { x , y } ∩ { u , v } = ∅ \pi_{h-1}=\left(u v\right)\wedge \left\{x,y\right\}\cap \left\{u,v\right\}=\empty πh1=(uv){x,y}{u,v}=( x , y x,y x,y u , v u,v u,v一点关系没有)
则直接交换 π h − 1 \pi_{h-1} πh1 π h \pi_{h} πh也完全没有影响
这种情况会 x x x将向前移动一个对换
3:若 π h − 1 = ( x z ) , z ≠ x , y \pi_{h-1}=\left(x z\right), z\neq x,y πh1=(xz),z=x,y
( x z ) ( x y ) = ( x y ) ( y z ) \left(x z\right)\left(x y\right)=\left(x y\right)\left(y z\right) (xz)(xy)=(xy)(yz)
π h − 1 ′ = ( x y ) , π h ′ = ( y z ) \pi_{h-1}^{\prime}=\left(x y\right),\pi_{h}^{\prime}=\left(y z\right) πh1=(xy),πh=(yz)
π 1 π 2 ⋯ π h − 2 π h − 1 π h π h + 1 ⋯ π k = π 1 π 2 ⋯ π h − 2 π h − 1 ′ π h ′ π h + 1 ⋯ π k \pi_1\pi_2\cdots \pi_{h-2}\pi_{h-1}\pi_h\pi_{h+1}\cdots \pi_k=\pi_1\pi_2\cdots \pi_{h-2}\pi_{h-1}^{\prime}\pi_h^{\prime}\pi_{h+1}\cdots \pi_k π1π2πh2πh1πhπh+1πk=π1π2πh2πh1πhπh+1πk
这种情况会 x x x将向前移动一个对换
4:若 π h − 1 = ( y z ) , z ≠ x , y \pi_{h-1}=\left(y z\right), z\neq x,y πh1=(yz),z=x,y
( y z ) ( x z ) = ( y z ) ( y z ) \left(y z\right)\left(x z\right)=\left(y z\right)\left(y z\right) (yz)(xz)=(yz)(yz)
π h − 1 ′ = ( x y ) , π h ′ = ( y z ) \pi_{h-1}^{\prime}=\left(x y\right),\pi_{h}^{\prime}=\left(y z\right) πh1=(xy),πh=(yz)
π 1 π 2 ⋯ π h − 2 π h − 1 π h π h + 1 ⋯ π k = π 1 π 2 ⋯ π h − 2 π h − 1 ′ π h ′ π h + 1 ⋯ π k \pi_1\pi_2\cdots \pi_{h-2}\pi_{h-1}\pi_h\pi_{h+1}\cdots \pi_k=\pi_1\pi_2\cdots \pi_{h-2}\pi_{h-1}^{\prime}\pi_h^{\prime}\pi_{h+1}\cdots \pi_k π1π2πh2πh1πhπh+1πk=π1π2πh2πh1πhπh+1πk
这种情况会 x x x将向前移动一个对换

综上第 1 1 1种情况会减少两个对换
而第 2 , 3 , 4 2,3,4 2,3,4种情况会使得 x x x前进一个对换

假设 x x x被移动到了第一个对换
那么也就是说 π 2 π 3 ⋯ π k ( x ) = x \pi_2\pi_3\cdots\pi_k\left(x\right)=x π2π3πk(x)=x,也就是说除了第一个对换,其他的对换不会影响 x x x
但是会出现 π 1 ( x ) = a ≠ x \pi_1\left(x\right)=a\neq x π1(x)=a=x,即 x x x被置换为一个非 x x x的数字,与单位置换矛盾

因此,总会减少两个对换
而一个对换不能成为单位置换,因此单位置换总是偶数个对换
因此 j + k j+k j+k总是偶数, j j j k k k奇偶性相同

定义:若置换 π \pi π可表示为奇数个对换的积,则称 π \pi π为奇置换,否则称为偶置换

定理:令 A n A_n An S n S_n Sn中所有偶置换的集合,则 A n ≤ S n A_n\le S_n AnSn,称为 n n n交代群,且 ∣ A n ∣ = n ! 2 \left|A_n\right|=\frac{n!}{2} An=2n!

证明:群的有限子群的判定只需要考虑封闭性,由于偶置换的合成仍然是偶置换,故 A n ≤ S n A_n\le S_n AnSn,作
f : A n → S n − A n , π ↦ ( 1   2 ) π ; g : S n − A n → A n , π ↦ ( 1   2 ) π f:A_n\to S_n - A_n,\quad \pi \mapsto\left(1\ 2\right)\pi;\\ g:S_n-A_n\to A_n,\quad \pi \mapsto \left(1\ 2\right)\pi f:AnSnAn,π(1 2)π;g:SnAnAn,π(1 2)π
显然 f f f g g g都是单射,故 ∣ A n ∣ = ∣ S n − A n ∣ = n ! 2 \left|A_n\right|=\left|S_n-A_n\right|=\frac{n!}{2} An=SnAn=2n!

课后习题

1. < Q , + > \left<\mathbb{Q},+\right> Q,+ < Q ∗ , ⋅ > \left<\mathbb{Q}^*,\cdot\right> Q,是循环群吗?
解:不是
假设 < Q , + > \left<\mathbb{Q},+\right> Q,+是循环群,则
设生成元为 a a a,则 Q = { ⋯   , − 2 a , − a , 0 , a , 2 a , ⋯   } \mathbb{Q}=\left\{\cdots,-2a, -a,0, a,2a,\cdots\right\} Q={,2a,a,0,a,2a,}
a 2 = k a ( k ∈ I ) ⇒ k = 1 2 \frac{a}{2}=ka\left(k\in\mathbb{I}\right)\Rightarrow k=\frac{1}{2} 2a=ka(kI)k=21,矛盾

假设 < Q ∗ , ⋅ > \left<\mathbb{Q}^*,\cdot\right> Q,是循环群,则
设生成元为 a a a,则 Q ∗ = { ⋯   , − a − 2 , a − 1 , 1 , a , a 2 , ⋯   } \mathbb{Q}^*=\left\{\cdots,-a^{-2}, a^{-1},1, a,a^2,\cdots\right\} Q={,a2,a1,1,a,a2,}
显然 a ≠ ± 1 a\neq \pm 1 a=±1
a k = − 1 a^{k}=-1 ak=1无解

2. I \mathbb{I} I上的二元运算 ∗ * 定义为: ∀ a , b ∈ I , a ∗ b = a + b − 2 \forall a,b\in \mathbb{I}, a*b=a+b-2 a,bI,ab=a+b2.试问 < I , ∗ > \left<\mathbb{I},*\right> I,是循环群吗?
解:是
生成元为 1 1 1
a ∗ 1 = a + 1 − 2 = a − 1 a * 1 = a+1-2=a-1 a1=a+12=a1
a ∗ 1 − 1 = a ∗ 3 = a + 3 − 2 = a + 1 a * 1^{-1}=a*3=a+3-2=a+1 a11=a3=a+32=a+1
因此 < I , ∗ > \left<\mathbb{I},*\right> I,是循环群

3.试求出 8 8 8 阶循环群的所有生成元和所有子群
解:
< G , ⋅ > = { e , a , a 2 , ⋯   , a 7 } \left<G,\cdot\right>=\left\{e, a,a^2,\cdots,a^7\right\} G,={e,a,a2,,a7}
生成元 a , a 3 , a 5 , a 7 a,a^3,a^5,a^7 a,a3,a5,a7
子群
< G , ⋅ > , < { e } , ⋅ > \left<G,\cdot\right>, \left<\left\{e\right\},\cdot\right> G,,{e},
< { e , a 2 , a 4 , a 6 } , ⋅ > , < { e , a 4 } , ⋅ > \left<\left\{e,a^2,a^4,a^6\right\}, \cdot\right>, \left<\left\{e,a^4\right\}, \cdot\right> {e,a2,a4,a6},,{e,a4},

4.设 G G G是不包含非平凡子群的有限群。试证: G G G是平凡群或质数阶的循环群

证明:
平凡群 < { e } , ⋅ > \left<\left\{e\right\}, \cdot\right> {e},显然不包含非平凡子群
质数阶的循环群,生成元只有本身,因此不包含非平凡子群

∣ G ∣ = n = m k ( n , m , k ∈ N ) \left|G\right|=n=mk\left(n,m,k\in\mathbb{N}\right) G=n=mk(n,m,kN)
那么
H = { e , a , a k , a 2 k , ⋯   , a ( m − 1 ) k } H=\left\{e,a,a^k, a^{2k},\cdots,a^{\left(m-1\right)k}\right\} H={e,a,ak,a2k,,a(m1)k}
∣ H ∣ = m , H ≤ G \left|H\right|=m, H\le G H=m,HG
与不包含非平凡子群矛盾

5.设 G = ( a ) G=\left(a\right) G=(a) n n n阶循环群, m ∈ I + m\in\mathbb{I}_+ mI+,且 ( m , n ) = d \left(m,n\right)=d (m,n)=d。试证 ( a m ) = ( a d ) \left(a^m\right)=\left(a^d\right) (am)=(ad)
证明:
由扩展欧几里得定理 m s + n t = d ms+nt=d ms+nt=d有解
a d = a m s a n t = ( a m ) s a^d=a^{ms}a^{nt}=\left(a^{m}\right)^{s} ad=amsant=(am)s
因此 ( a m ) = ( a d ) \left(a^m\right)=\left(a^d\right) (am)=(ad)

6.设 G G G是循环群, G ∼ G ′ G\sim G^{\prime} GG。试证 G ′ G^{\prime} G也是循环群
证明:
G = ( a ) G=\left(a\right) G=(a),设 h h h G G G G ′ G^{\prime} G的满同态
∀ y ∈ G ′ , ∃ x ∈ G \forall y\in G^{\prime}, \exists x\in G yG,xG
y = h ( x ) = h ( a i ) = ( h ( a ) ) i y=h\left(x\right)=h\left(a^i\right)=\left(h\left(a\right)\right)^i y=h(x)=h(ai)=(h(a))i
因此 G ′ = ( h ( a ) ) G^{\prime}=\left(h\left(a\right)\right) G=(h(a))

7.设 G G G是无限阶循环群, G ′ G^{\prime} G是任意循环群。试证: G ∼ G ′ G\sim G^{\prime} GG
证明:
h : G → G ′ , a i ↦ b i h:G\to G^{\prime}, a^i\mapsto b^i h:GG,aibi
由于 G G G是无限阶,因此如果 a i = a j a^i=a^j ai=aj,则 i = j i=j i=j
进而 h ( a i ) = h ( a j ) h\left(a^i\right)=h\left(a^j\right) h(ai)=h(aj)构成映射

容易验证 h h h是同态

8.试证: C m × C n ≅ C m n C_m\times C_n \cong C_{mn} Cm×CnCmn当且仅当 m m m n n n互质,其中 C m C_m Cm表示 m m m阶循环群

证明:
C m = ( a ) , C n = ( b ) , ∣ a ∣ = m , ∣ b ∣ = n C_m=\left(a\right),C_n=\left(b\right), \left|a\right|=m,\left|b\right|=n Cm=(a),Cn=(b),a=m,b=n

充分性:如果 ( m , n ) = 1 \left(m,n\right)=1 (m,n)=1,显然 ∣ < m , n > ∣ = m n \left|\left<m,n\right>\right|=mn m,n=mn

必要性:如果 C m × C n ≅ C m n C_m\times C_n \cong C_{mn} Cm×CnCmn
显然 < a , b > m n = e \left<a,b\right>^{mn}=e a,bmn=e
如果 ( m , n ) = d > 1 \left(m,n\right)=d>1 (m,n)=d>1,则
∣ < a ′ , b ′ > ∣ < m n \left|\left<a^\prime,b^\prime\right>\right|<mn a,b<mn,与 C m n C_{mn} Cmn的生成元的阶为 m n mn mn矛盾

11.证明:无公共文字的循环是可交换的
证明:
显然
考虑 S n S_n Sn中两个循环 σ , τ \sigma,\tau σ,τ
(1)数字 i i i σ \sigma σ中出现,并且把 i i i变为 j j j
由于 i , j i,j i,j不在 τ \tau τ中出现,因此 τ \tau τ不改变 j j j所以 σ τ \sigma\tau στ仍然把 i i i变成 j j j
(2)数字 k k k τ \tau τ中出现,并且把 k k k变为 l l l
由于 k , l k,l k,l不在 σ \sigma σ中出现,因此 σ \sigma σ不改变 k k k所以 σ τ \sigma\tau στ仍然把 k k k变成 l l l
(3)数字 m m m不在 σ \sigma σ τ \tau τ中出现,此时 σ τ \sigma\tau στ不改变 m m m

如上考察 τ σ \tau\sigma τσ,可以得到同样的结果
因此 σ τ = τ σ \sigma\tau=\tau\sigma στ=τσ

12.证明:循环的阶等于循环的长度

证明:
σ = ( a 1 a 2 ⋯ a n ) \sigma=\left(a_1 a_2\cdots a_n\right) σ=(a1a2an)为循环
显然 σ k ( a i ) = a ( i + k ) m o d    n \sigma^k\left(a_i\right)=a_{\left(i+k\right)\mod n} σk(ai)=a(i+k)modn
因此 σ n = e \sigma^n=e σn=e
进而 ∣ σ ∣ = n \left|\sigma\right|=n σ=n

参考:
离散数学(刘玉珍)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值