void cvSplit(const CvArr* src,CvArr *dst0,CvArr *dst1, CvArr *dst2, CvArr *dst3);
有些时候处理多通道图像时不是很方便,在这种情况下,可以利用cvSplit()分别复制每个通道到多个单通道图像,如果需要,cvSplit()函数将复制src(即源多通道图像)的各个通道到图像dst0、dst1、dst2、dst3中。目标图像必须与源图像在大小和数据类型上匹配,当然也应该是单通道的图像。
如果源图像少于4个通道(这种情况经常出现),那么传递给cvSplit()的不必要的目标参数可设置为NULL。
下面的程序便是将多通道图像转换为单通道图像 程序的核心部分。
图像阈值化的基本思想是,给定一个数组和一个阈值,然后根据数组中每个元素是低于还是高于阈值而进行一些处理。
cvThreshold()函数如下:
double cvThreshold(CvArr* src, CvArr* dst, double threshold, double max_value, int threshold_type);
cvShold函数只能处理8位或者浮点灰度图像,目标图像必须与源图像一致,或者为8为图像 。
实现阈值化的代码如下:
#include <cv.h>
#include <highgui.h>
#include <iostream>
using namespace std;
int main()
{
IplImage* sourceImage;
IplImage* dstImage;
if(!(sourceImage = cvLoadImage("D:\\Testing_Images\\view.png")))
return -1;
dstImage = cvCreateImage(cvGetSize(sourceImage), sourceImage->depth, 1);
IplImage* r = cvCreateImage(cvGetSize(sourceImage), IPL_DEPTH_8U, 1);
IplImage* g = cvCreateImage(cvGetSize(sourceImage), IPL_DEPTH_8U, 1);
IplImage* b = cvCreateImage(cvGetSize(sourceImage), IPL_DEPTH_8U, 1);
IplImage* tempImage = cvCreateImage(cvGetSize(sourceImage), IPL_DEPTH_8U, 1);
cvSplit(sourceImage, r, g, b, NULL);
cvAddWeighted(r, 1./3., g, 1./3., 0.0, tempImage);
cvAddWeighted(tempImage, 1, b, 1./3., 0.0, tempImage);
cvThreshold(tempImage, dstImage, 100, 255, CV_THRESH_BINARY);
// 对于大于100的设为255
cvNamedWindow("sourceImage");
cvNamedWindow("dstImage");
cvShowImage("sourceImage",sourceImage);
cvShowImage("dstImage",dstImage);
cvWaitKey(-1);
cvReleaseImage(&r);
cvReleaseImage(&g);
cvReleaseImage(&b);
cvDestroyWindow("sourceImage");
cvDestroyWindow("dstImage");
cvReleaseImage(&sourceImage);
cvReleaseImage(&dstImage);
return 0;
}