亲子游戏【华为OD机试】(JAVA&Python&C++&JS题解)

149 篇文章 162 订阅 ¥9.90 ¥99.00
本文介绍了华为在线评估(OD)中的一道亲子游戏问题,涉及二维矩阵上的最短路径和最大糖果收集。给出了使用Python、Java、C/C++和JavaScript的解题思路和代码解析,包括深度优先搜索和广度优先搜索的方法。同时,提供了示例输入和输出以及解题过程的详细解释。
摘要由CSDN通过智能技术生成

题目描述

宝宝和妈妈参加亲子游戏,在一个二维矩阵(NN)的格子地图上,宝宝和妈妈抽签决定各自的位置,地图上每个格子有不同的糖果数量,部分格子有障碍物。
游戏规则是妈妈必须在最短的时间(每个单位时间只能走一步)到达宝宝的位置,路上的所有糖果都可以拿走,不能走障碍物的格子,只能上下左右走。
请问妈妈在最短到达宝宝位置的时间内最多拿到多少糖果(优先考虑最短时间到达的情况下尽可能多拿糖果)。
输入描述
第一行输入为N,N标识二维矩阵的大小
之后N行,每行有N个值,表格矩阵每个位置的值
其中:
-3:妈妈
-2:宝宝
-1:障碍
=0:糖果数(0表示没有糖果,但是可以走)
输出描述
输出妈妈在最短到达宝宝位置的时间内最多拿到多少糖果,行末无多余空格
示例1
输入输出示例仅供调试,后台判题数据一般不包含示例
输入
4
3 2 1 -3
1 -1 1 1
1 1 -1 2
-2 1 2 3
输出
9
说明
在这里插入图片描述
此地图有两条最短路径可到宝宝位置,绿色线和黄色线都是最短路径6步,但黄色拿到的糖果更多,9个
示例2
输入输出示例仅供调试,后台判题数据一般不包含示例
输入
4
3 2 1 -3
-1 -1 1 1
1 1 -1 2
-2 1 -1 3
输出
-1
说明
在这里插入图片描述
此地图妈妈无法到达宝宝位置
备注
地图最大50
50

解题思路

解题思路主要包括两个步骤:

  1. 寻找最短路径: 使用深度优先搜索(DFS)或广度优先搜索(BFS)来找到妈妈到宝宝位置的所有最短路径。在这个过程中,需要注意不走障碍物且避免重复访问同一个位置。在找到路径的同时,记录路径的长度。

  2. 计算最多糖果: 遍历所有找到的最短路径,计算每条路径上经过的糖果总数,选择最大的糖果总数作为结果。

以下是详细的解题思路:

  • 从输入中读取地图大小 N 和地图矩阵 arr。
  • 使用深度优先搜索(DFS)或广度优先搜索(BFS)找到妈妈到宝宝位置的最短路径。在搜索的过程中,记录路径的长度和路径上的所有点。
  • 遍历所有找到的最短路径,计算每条路径上经过的糖果总数。
  • 输出最大的糖果总数作为结果。

题解代码

Python题解代码

class PP:
    def __init__(self, x, y):
        self.x = x
        self.y = y
 
g_pts = []  # 存储所有可能的路径
g_len = 30000  # 初始化最短路径长度
dx = [0, 0, 1, -1]  # 方向数组,用于搜索路径
dy = [1, -1, 0, 0]
 
def get_path(arr, n, begin, end, p):
    global g_pts, g_len
    if begin.x >= n or begin.x < 0 or begin.y >= n or begin.y < 0 or arr[begin.x][begin.y] == -1 or len(p) > g_len:
        return  # 越界或者访问过的位置直接返回
    p.append(begin)
    if begin.x == end.x and begin.y == end.y and len(p) <= g_len:
        g_pts.append(p[:])  # 找到一条路径,存储并更新最短路径长度
        g_len = len(p)
        return
    old = arr[begin.x][begin.y]  # 保存当前位置的值
    arr[begin.x][begin.y] = -1  # 标记当前位置为已访问
    for i in range(4):
        x = begin.x + dx[i]
        y = begin.y + dy[i]
        get_path(arr, n, PP(x, y), end, p.copy())  # 递归搜索四个方向
    arr[begin.x][begin.y] = old  # 恢复当前位置的值
 
if __name__ == "__main__":
    n = int(input())  # 读取输入的大小
    arr = []  # 存储迷宫
    begin = PP(0, 0)  # 起始位置
    end = PP(0, 0)  # 终点位置
    for i in range(n):
        row = list(map(int, input().split()))  # 读取每一行的数据
        arr.append(row)
        for j in range(n):
            if row[j] == -3:
                begin = PP(i, j)  # 记录起始位置
            elif row[j] == -2:
                end = PP(i, j)  # 记录终点位置
    tmp = []
    get_path(arr, n, begin, end, tmp)  # 搜索所有可能的路径
    mxv = -1
    if len(g_pts) > 0:
        for p in g_pts:
            if len(p) == g_len:  # 只考虑最短路径
                all = 0
                for i in range(1, len(p) - 1):
                    all += arr[p[i].x][p[i].y]  # 计算路径上的数字总和
                if all > mxv:
                    mxv = all  # 更新最大值
    print(mxv)  # 输出结果

JAVA题解代码

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
 
class PP {
    int x;
    int y;
 
    public PP(int _x, int _y) {
        x = _x;
        y = _y;
    }
}
 
public class Main {
    static List<List<PP>> g_pts = new ArrayList<>();
    static int g_len = 30000;
    static int[] dx = {0, 0, 1, -1};
    static int[] dy = {1, -1, 0, 0};
 
    public static int getPath(int[][] arr, int n, PP begin, PP end, List<PP> p) {
        if (begin.x >= n || begin.x < 0 || begin.y >= n || begin.y < 0 || arr[begin.x][begin.y] == -1 || p.size() > g_len) {
            return 0;
        }
        p.add(begin);
        if (begin.x == end.x && begin.y == end.y && p.size() <= g_len) {
            g_pts.add(new ArrayList<>(p));
            g_len = p.size();
            return 0;
        }
        int old = arr[begin.x][begin.y];
        arr[begin.x][begin.y] = -1;
        for (int i = 0; i < 4; ++i) {
            int x = begin.x + dx[i];
            int y = begin.y + dy[i];
            getPath(arr, n, new PP(x, y), end, new ArrayList<>(p));
        }
        arr[begin.x][begin.y] = old;
        return 0;
    }
 
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int[][] arr = new int[n][n];
        PP begin = new PP(0, 0);
        PP end = new PP(0, 0);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                arr[i][j] = scanner.nextInt();
                if (arr[i][j] == -3) {
                    begin = new PP(i, j);
                } else if (arr[i][j] == -2) {
                    end = new PP(i, j);
                }
            }
        }
        List<PP> tmp = new ArrayList<>();
        getPath(arr, n, begin, end, tmp);
        int mxv = -1;
        if (g_pts.size() > 0) {
            for (List<PP> p : g_pts) {
                if (p.size() == g_len) {
                    int all = 0;
                    for (int i = 1; i < p.size() - 1; ++i) {
                        all += arr[p.get(i).x][p.get(i).y];
                    }
                    if (all > mxv) mxv = all;
                }
            }
        }
        System.out.println(mxv);
    }
}

C/C++题解代码

#include <iostream>
#include <queue>
#include <climits>
#include <vector>
 
 
using namespace std;
 
 
struct PP {
	int x;
	int y;
	PP(int _x, int _y) : x(_x), y(_y) {}
};
 
 
const int dx[] = { 0, 0, 1, -1 };
const int dy[] = { 1, -1, 0, 0 };
 
vector<vector<PP>> g_pts;
int g_len = 30000;
int getPath(vector<vector<int>>& arr, int n, PP begin, PP end, vector<PP> p) {
	if (begin.x >= n || begin.x < 0 || begin.y >= n || begin.y < 0 || arr[begin.x][begin.y] == -1 || p.size() > g_len) {
		return 0;
	}
	p.push_back(begin);
	if (begin.x == end.x && begin.y == end.y && p.size() <= g_len) {
		g_pts.push_back(p);
		g_len = p.size();
		return 0;
	}
	int old = arr[begin.x][begin.y];
	arr[begin.x][begin.y] = -1;
	for (int i = 0; i < 4; ++i) {
		int x = begin.x + dx[i];
		int y = begin.y + dy[i];
		getPath(arr, n, { x,y }, end, p);
	}
	arr[begin.x][begin.y] = old;
	return 0;
}
 
int main() {
	int n;
	cin >> n;
	vector<vector<int>> arr(n, vector<int>(n));
	PP begin(0, 0);
	PP end(0, 0);
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < n; j++) {
			cin >> arr[i][j];
			if (arr[i][j] == -3) {
				begin = { i, j };
			}
			else if (arr[i][j] == -2) {
				end = { i, j };
			}
		}
	}
	vector<PP> tmp;
	getPath(arr, n, begin, end, tmp);
	int mxv = -1;
	if (g_pts.size() > 0) {
		for (auto p : g_pts) {
			if (p.size() == g_len) {
				int all = 0;
				for (int i = 1; i < p.size() - 1; ++i) {
					all += arr[p[i].x][p[i].y];
				}
				if (all > mxv)mxv = all;
			}
		}
	}
 
	cout << mxv << endl;
 
	return 0;
}

JS题解代码


class Point {
  constructor(x, y) {
    this.x = x;
    this.y = y;
  }
}

let gPts = [];  // 存储所有可能的路径
let gLen = 30000;  // 初始化最短路径长度

const dx = [0, 0, 1, -1];  // 方向数组,用于搜索路径
const dy = [1, -1, 0, 0];

function getPath(arr, n, begin, end, p) {
  if (begin.x >= n || begin.x < 0 || begin.y >= n || begin.y < 0 || arr[begin.x][begin.y] === -1 || p.length > gLen) {
    return;  // 越界或者访问过的位置直接返回
  }

  p.push(new Point(begin.x, begin.y));

  if (begin.x === end.x && begin.y === end.y && p.length <= gLen) {
    gPts.push([...p]);  // 找到一条路径,存储并更新最短路径长度
    gLen = p.length;
    return;
  }

  const old = arr[begin.x][begin.y];  // 保存当前位置的值
  arr[begin.x][begin.y] = -1;  // 标记当前位置为已访问

  for (let i = 0; i < 4; ++i) {
    const x = begin.x + dx[i];
    const y = begin.y + dy[i];
    getPath(arr, n, new Point(x, y), end, [...p]);  // 递归搜索四个方向
  }

  arr[begin.x][begin.y] = old;  // 恢复当前位置的值
}

function main() {
  const n = parseInt(prompt());  // 读取输入的大小
  const arr = [];  // 存储迷宫
  let begin = new Point(0, 0);  // 起始位置
  let end = new Point(0, 0);  // 终点位置

  for (let i = 0; i < n; i++) {
    const row = prompt().split(' ').map(Number);  // 读取每一行的数据
    arr.push(row);

    for (let j = 0; j < n; j++) {
      if (row[j] === -3) {
        begin = new Point(i, j);  // 记录起始位置
      } else if (row[j] === -2) {
        end = new Point(i, j);  // 记录终点位置
      }
    }
  }

  const tmp = [];
  getPath(arr, n, begin, end, tmp);  // 搜索所有可能的路径
  let mxv = -1;

  if (gPts.length > 0) {
    for (const p of gPts) {
      if (p.length === gLen) {  // 只考虑最短路径
        let all = 0;

        for (let i = 1; i < p.length - 1; ++i) {
          all += arr[p[i].x][p[i].y];  // 计算路径上的数字总和
        }

        if (all > mxv) {
          mxv = all;  // 更新最大值
        }
      }
    }
  }

  console.log(mxv);  // 输出结果
}

main();

代码OJ评判结果

通过测试点

代码讲解

Python 题解代码解析:

  1. PP 类:

    • 用于表示二维平面上的点,包含两个属性 xy
  2. 全局变量:

    • g_pts: 用于存储所有可能的路径。
    • g_len: 初始化最短路径长度为 30000。
    • dxdy: 方向数组,用于搜索路径。
  3. get_path 函数:

    • 使用深度优先搜索(DFS)找到妈妈到宝宝位置的所有最短路径。
    • 参数包括迷宫数组 arr、迷宫大小 n、起始点 begin、终点 end、当前路径 p
    • 递归搜索所有可能的路径,并在找到最短路径时更新全局变量 g_ptsg_len
  4. 主程序:

    • 读取迷宫大小 n
    • 读取迷宫数组 arr
    • 使用 PP 类创建起始点 begin 和终点 end
    • 调用 get_path 函数搜索所有可能的路径。
    • 遍历找到的最短路径,计算路径上的糖果总数,输出最大糖果总数。

JAVA 题解代码解析:

  1. PP 类:

    • 用于表示二维平面上的点,包含两个属性 xy
  2. 全局变量:

    • g_pts: 用于存储所有可能的路径。
    • g_len: 初始化最短路径长度为 30000。
    • dxdy: 方向数组,用于搜索路径。
  3. getPath 函数:

    • 使用深度优先搜索(DFS)找到妈妈到宝宝位置的所有最短路径。
    • 参数包括迷宫数组 arr、迷宫大小 n、起始点 begin、终点 end、当前路径 p
    • 递归搜索所有可能的路径,并在找到最短路径时更新全局变量 g_ptsg_len
  4. 主程序:

    • 读取迷宫大小 n
    • 读取迷宫数组 arr
    • 使用 PP 类创建起始点 begin 和终点 end
    • 调用 getPath 函数搜索所有可能的路径。
    • 遍历找到的最短路径,计算路径上的糖果总数,输出最大糖果总数。

C/C++ 题解代码解析:

  1. PP 结构体:

    • 用于表示二维平面上的点,包含两个属性 xy
  2. 全局变量:

    • g_pts: 用于存储所有可能的路径。
    • g_len: 初始化最短路径长度为 30000。
    • dxdy: 方向数组,用于搜索路径。
  3. getPath 函数:

    • 使用深度优先搜索(DFS)找到妈妈到宝宝位置的所有最短路径。
    • 参数包括迷宫数组 arr、迷宫大小 n、起始点 begin、终点 end、当前路径 p
    • 递归搜索所有可能的路径,并在找到最短路径时更新全局变量 g_ptsg_len
  4. 主程序:

    • 读取迷宫大小 n
    • 读取迷宫数组 arr
    • 使用 PP 结构体创建起始点 begin 和终点 end
    • 调用 getPath 函数搜索所有可能的路径。
    • 遍历找到的最短路径,计算路径上的糖果总数,输出最大糖果总数。

JS 题解代码解析:

  1. Point 类:

    • 用于表示二维平面上的点,包含两个属性 xy
  2. 全局变量:

    • gPts: 用于存储所有可能的路径。
    • gLen: 初始化最短路径长度为 30000。
    • dxdy: 方向数组,用于搜索路径。
  3. getPath 函数:

    • 使用深度优先搜索(DFS)找到妈妈到宝宝位置的所有最短路径。
    • 参数包括迷宫数组 arr、迷宫大小 n、起始点 begin、终点 end、当前路径 p
    • 递归搜索所有可能的路径,并在找到最短路径时更新全局变量 gPtsgLen
  4. 主程序:

    • 通过 prompt 获取用户输入。
    • 使用 Point 类创建起始点 begin 和终点 end
    • 调用 getPath 函数搜索所有可能的路径。
    • 遍历找到的最短路径,计算路径上的糖果总数,输出最大糖果总数。

寄语

🚀✨ 朋友,希望你的华为OD机试就像是一场轻松的技术party!愿你的代码如同畅快的音符,跳跃在键盘上,最后弹奏出一曲高分之歌。加油,你是技术舞台上的巨星!通过机试,就像是风轻云淡,轻轻松松就把高分收入囊中。祝愿你的编程之旅一路顺风,破风前行,每一行代码都是成功的注脚!🌈💻

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值