亮数据:AI时代的数据采集革命者——从试用体验到实战应用全解析

🎼个人主页:【Y小夜】

😎作者简介:一位双非学校的大三学生,编程爱好者,

专注于基础和实战分享,欢迎私信咨询!

🎆入门专栏:🎇【MySQLJavawebRustpython

🎈热门专栏:🎊【SpringbootRedisSpringsecurityDockerAI】 

感谢您的点赞、关注、评论、收藏、是对我最大的认可和支持!❤️

目录

​一、为什么选择亮数据?——试用体验与核心优势

试用体验亮点

二、实战测试

 测试1

测试场景

 平台注册

查看用户名和密码

爬虫代码

测试2:

测试场景

测试操作

三、AI遇到数据饥渴

动态对抗:Scraping Browser的智能突围

数据管道:Web Unlocker的实时净化

四、技术优势与行业应用

五、总结


一、为什么选择亮数据?——试用体验与核心优势

        在AI与大数据驱动的时代,获取高质量、结构化且实时的数据是模型训练与业务决策的基础。然而,传统爬虫工具面临IP封禁、动态渲染、反爬机制等技术瓶颈,而亮数据(Bright Data)通过其全栈式数据采集解决方案,完美解决了这些问题。

试用体验亮点

经过我一天的使用,现总结出三点分享分享给大家:

第一点:它具有零代码抓取与智能工具集成: 亮数据的Web Scraper IDE和浏览器插件无需编程基础,通过可视化界面即可配置目标网站的数据抓取规则。例如,在抓取电商价格时,只需点击页面元素并定义字段,系统自动生成结构化数据 

第二点:他可以动态住宅代理网络: 覆盖全球195个国家/地区的7200万住宅IP,支持自动轮换和地理定位。在测试中,使用亮数据代理访问亚马逊美国站,成功绕过地域限制,抓取效率提升300%,IP封禁率降至0%

第三代:它拥有合规性与安全性: 通过KYC实名认证和加密传输,确保数据采集符合GDPR、CCPA等法规。与VirusTotal、Avast等安全巨头合作,实时监控300亿域名,屏蔽非法内容

二、实战测试

废话不多说,说的再好听大家心中还是有顾虑,那么我现在就把我测试的全过程展现给大家:

 测试1

测试场景

为自然语言处理(NLP)模型训练收集最新学术论文数据,来源为arXiv计算机科学板块。

 平台注册

网页抓取工具 - 网页爬虫工具 - 免费试用

点击免费使用后,试用后,可获得三天免费体验哟

在注册时,一定要注意:符合要求,不然注册可能会出问题

然后点击:Proxies & Scraping

接下来我们选择,选择抓取浏览器(这里你按照自己的需求去选),然后点击去使用

接下来点击抓取数据,按自己的需求进行配置即可

最后点击添加:

如果你对爬虫代码不太熟的话,操作平台也提供的示例代码:

查看用户名和密码

在概览里面可以查看到自己的用户名和密码等信息(这里如果自己编写爬虫代码的话,建议赋值单一字符串格式的三种之一,比较方便操作)

爬虫代码

这里我们对:https://arxiv.org/list/cs/new这个网站进行爬取:

import requests
from bs4 import BeautifulSoup
import pandas as pd

proxy = {
    'http': '刚刚你复制的单一格式的信息'
}


def fetch_arxiv_papers():
    url = 'https://arxiv.org/list/cs/new'
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36',
        'Accept-Language': 'en-US,en;q=0.9'
    }

    try:
        response = requests.get(url, headers=headers, proxies=proxy, timeout=20)
        response.raise_for_status()
        print("状态码:", response.status_code)

        soup = BeautifulSoup(response.text, 'html.parser')
        papers = []

        entries = soup.find_all('div', class_='meta')
        print("找到论文条目数:", len(entries))

        for entry in entries:
            # 标题处理
            title_div = entry.find('div', class_='list-title')
            title = title_div.text.replace('Title:', '').strip() if title_div else "无标题"

            # 作者处理(关键修改部分)
            author_div = entry.find('div', class_='list-authors')  # 新增定位层
            authors = [a.text.strip() for a in author_div.find_all('a')] if author_div else []

            # 摘要处理
            abstract_p = entry.find('p', class_='mathjax')
            abstract = abstract_p.text.strip() if abstract_p else "无摘要"

            papers.append({'title': title, 'authors': ', '.join(authors), 'abstract': abstract})

        return pd.DataFrame(papers)

    except Exception as e:
        print(f"错误发生: {str(e)}")
        return pd.DataFrame()


# 执行保存
df = fetch_arxiv_papers()
if not df.empty:
    df.to_json('arxiv_papers.json', orient='records', indent=2)
    print("文件保存成功!")
else:
    print("未抓取到数据")

运行代码,爬取出来的json数据为:

发现爬取成功!!!

测试2:

测试场景

还在为代码bug发愁?快来试一试亮数据提供的网络爬虫市场!

测试操作

选择一个例子进行测试

选择通过URL爬取数据

这里我们选择无代码抓取器,可以实现在控制面板上进行所有操作:

然后点击start collection

现在显示Ready,说明已经爬取完成。

然后点击日志,点击下载,下载为json

我们查看这个json文件

发现我们也爬取出来了

三、AI遇到数据饥渴

        在开发基于大语言模型的智能客服系统时,我们团队遇到了棘手的"数据饥渴"困境。项目初期,我们尝试用传统方法采集电商平台产品数据用于训练垂直领域模型,但很快遭遇三个致命问题:

1. 反爬铁幕下的数据荒原

使用常规爬虫时,目标网站通过指纹识别封锁了80%的请求

动态加载内容导致BeautifulSoup解析失败率高达65%

验证码拦截使凌晨自动化采集计划完全失效

2. 数据孤岛中的模型瘫痪

陈旧的历史数据无法反映最新价格波动(误差±23%)

非结构化数据导致特征提取效率低下(预处理耗时占比40%)

区域性IP限制造成产品描述信息缺失(覆盖率仅57%)

3. 算力黑洞吞噬项目预算

自建代理池维护成本超预期3倍($4200/月)

数据清洗消耗GPU资源达37%

数据更新延迟导致模型每周需重新训练

亮数据破局三部曲:

动态对抗:Scraping Browser的智能突围

通过集成Bright Data的Scraping Browser,我们构建了自适应采集系统:

from brightdata.browser import Browser

# 创建智能浏览器实例
browser = Browser(
    automation=True, # 启用自动化检测规避
    stealth_mode="advanced", # 深度指纹混淆
    captcha_solver="AI" # 自动验证码破解
)

# 动态等待与内容捕获
product_data = browser.get(
    "https://target-site/product123",
    wait_for=[
        {"type": "selector", "value": ".price-updated"},
        {"type": "network", "value": "graphql"} # 拦截API请求
    ],
    parse_spec={"pricing": {"selector": "span#dynamic-price", "js": True}} # 执行客户端JS
)

结果:采集成功率从19%提升至93%,数据时效性误差<0.5%

数据管道:Web Unlocker的实时净化

import brightdata

# 构建结构化数据流水线
pipeline = brightdata.Pipeline(
    unlock_config={
        "js_rendering": "full", 
        "geo_targeting": "auto",
        "data_normalization": {
            "currency": "USD",
            "date_format": "ISO8601"
        }
    }
)

# 批量处理原始数据
clean_data = pipeline.process(
    raw_data,
    schema="ecommerce_product", # 预定义数据结构模板
    quality_check={
        "completeness": 0.95,
        "freshness": "5m" 
    }
)

成效:预处理耗时降低82%,数据质量评分从C级提升至AA级

四、技术优势与行业应用

反反爬能力

        CAPTCHA自动破解:集成机器学习模型识别验证码,成功率达98% 

        浏览器指纹模拟:动态调整User-Agent、Canvas指纹等,规避网站风控 

高并发与低延迟: 支持每秒数千次请求,平均响应时间<2秒,适合实时数据管道。例如,某金融公司使用亮数据抓取全球股票行情,延迟低于1.5秒 

行业应用案例

        电商竞争分析:某头部平台通过亮数据监控竞品价格波动,日均抓取100万SKU,成本降低60% 

        AI训练数据:DeepMind使用亮数据抓取公开论文和专利数据,加速Gemma模型研发 

        智慧城市:结合物联网传感器数据,亮数据代理支持实时交通流量抓取,优化城市路网规划 。

五、总结

        亮数据不仅是爬虫工具,更是AI时代的数据基础设施。无论是训练大语言模型、构建实时推荐系统,还是监控市场动态,其解决方案均能显著提升数据获取效率与质量。正如海外开发者Avi Chawla所言:“亮数据的SERP API让我们的大规模AI写书项目从构想变为现实。”

网页抓取工具 - 网页爬虫工具 - 免费试用可无缝抓取网页数据的 Web 抓取 API。免代码界面,实现快速开发,无需代理管理。价格低至 $0.001/条记录,提供 24/7 全天候支持。https://get.brightdata.com/l34g74

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Y小夜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值