准备数据集
- 环境搭建不再赘述,默认已搭建好环境
- 准备需要训练的图片
- 使用labelimg或其他标注工具标注
下载yolov3
- 地址:yolov3
导入自己的数据集
- 解压文件,打开yolov3-master/data目录,删除原有的文件
- 新建四个文件夹(Annotations、ImageSets、images、labels)
- 在Annotations下放入xml文件
- 在images下放入图片文件
- 在ImageSets下新建文件夹Main
- 在Main文件夹下新建四个txt文件test.txt、train.txt、trainval.txt、val.txt
- 目录结构如图所示
划分数据集
- 在data文件夹下新建一个py文件,写入如下脚本,并运行
import os
import random
trainval_percent = 0.2 #比例可自行调整
train_percent = 1
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets\Main'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftest = open('ImageSets/Main/test.txt', 'w')
ftrain = open('ImageSets/Main/train.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
if i in train:
ftest.write(name)
else:
ftrain.write(name)
ftrain.close()
ftest.close()
配置训练文件
- 在data目录下新建geek.data文件,写入如下内容
classes=2 #类别数,按自己数据进行调整
train=data/train.txt
valid=data/test.txt
names=data/geek.names
- 在data目录下新建geek.names文件,写入要训练的分类(以hat、person二分类为例)
生成训练和测试文件
在yolov3-master目录下新建一个py文件,写入如下代码(以hat、person二分类为例),并运行
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets = ['train', 'test']
classes = ['hat','person'] #自己训练的类别
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(image_id):
in_file = open('data/Annotations/%s.xml' % (image_id))
out_file = open('data/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for image_set in sets:
if not os.path.exists('data/labels/'):
os.makedirs('data/labels/')
image_ids = open('data/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
list_file = open('data/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write('data/images/%s.jpg\n' % (image_id))
convert_annotation(image_id)
list_file.close()
修改cfg配置文件
- 以下是需要修改的参数及修改标准,有多处,建议全文检索修改
[convolutional]
size=1
stride=1
pad=1
filters=21 #计算标准:3 * (classes + 5)
activation=linear
[yolo]
mask = 6,7,8
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=2 #classes数量
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
添加权重文件
- 在weights目录下放入权重文件
训练数据
- 做完以上工作,就可以开始训练啦。
python train.py --data data/geek.data --cfg cfg/yolov3-spp.cfg #更多参数查看train.py
- 等待训练结束
测试模型
python detect.py --data data/geek.data --cfg cfg/yolov3-spp.cfg --weights weights/best.pt
更多操作
- 以上就是使用yolov3训练自己数据的基本流程,更多好玩的操作请查看官方指南