Windows 11+RTX3060安装CUDA、cuDNN与Pytorch

实验环境为RTX 3060的Windows 11。我在一开始没有安装合适的CUDA版本,导致最终Pytorch训练时报错,最终只能推倒重来,浪费了不少时间。

为了提醒更多的同学在一开始就安装正确的版本,在此记录。

经实验,完全没问题的版本是:

1. CUDA Toolkit 11.1.1

CUDA Toolkit 11.1 Update 1 Downloads | NVIDIA Developer

依次选择:

2. ​cuDNN v8.1.1 (Feburary 26th, 2021), for CUDA 11.0,11.1 and 11.2​

cuDNN Archive | NVIDIA Developer

依次选择:

Ubuntu 22.04 (Focal Fossa) 操作系统是一个基于Linux的桌面发行版,它以其稳定性、易用性和社区支持而知名。如果你想要在这样的环境下使用RTX 4090显卡,这是一款高端的NVIDIA GPU,专为深度学习和科学计算等高性能任务设计。 CUDA(Compute Unified Device Architecture)是NVIDIA提供的一种并行计算平台和编程模型,用于利用GPU加速各种计算密集型任务,包括机器学习和深度学习。在Ubuntu 22.04上安装CUDA,你需要下载对应版本的CUDA Toolkit,并配置好CUDA环境变量。 CUDNN(Convolutional Neural Networks)是NVIDIA针对深度学习库的一个优化库,特别适用于处理卷积神经网络。安装CUDNN需要先安装CUDA,然后从NVIDIA官网下载并安装相应版本的CUDNN库。 PyTorch是一个开源的深度学习框架,非常适合动态图操作,易于理解和调试。要在Ubuntu 22.04上运行PyTorch,并CUDACUDNN配合,你需要安装Python的torch库,通常会通过pip安装,并确认它链接到了正确的CUDACUDNN版本。 安装步骤大致如下: 1. 更新包列表并安装依赖项: ``` sudo apt-get update sudo apt-get install -y build-essential cmake git libncurses5-dev pkg-config libopenblas-dev libhdf5-dev libzlib-dev ``` 2. 安装CUDACUDNN: - 下载CUDA Toolkit - 设置CUDA环境变量 - 安装CUDNN (如果需要的话) 3. 安装Python和PyTorch: ``` sudo apt-get install python3-pip pip3 install torch torchvision torchaudio cudatoolkit=11.6 -f https://download.pytorch.org/whl/cu116/torch_stable.html ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值