Caution:RTX4060显卡只能适配Cuda11.3以上的版本,我自己安装的是CUDA11.3+cudnn8.2.1
CUDA下载地址:CUDA Toolkit Archive | NVIDIA Developer
cudnn下载地址:
cuDNN Archive | NVIDIA Developer
CUDA在安装时,只选择CUDA toolkit 11.3,其他选项使用空格键切换为空白即可(其他视频截图,并非自己安装的截图,因此时CUDA11.2,但是原理是一样的)
CUDA+cudnn安装成功后,使用命令:nvcc --version, 进行测试,如下显示,则为成功。
Tensorflow-GPU安装2.6.0版本,安装命令:
pip install tensorflow-gpu=2.6.0
pip install tensorflow-gpu==2.6.0 -i https://pypi.mirrors.ustc.edu.cn/simple(速度快)
测试命令:
import tensorflow as tf
print('GPU',tf.test.is_gpu_available())
如下显示,则为成功:
Pytorch安装1.11.0,安装命令:
# CUDA 11.3
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
测试命令:
import torch
print(torch.cuda.is_available())
显示如下,则为成功:
本文只列举了容易踩坑的布置,其余安装步骤均可百度解决,或者参考视频
linux安装tensorflow,cuda,cudnn安装,pytorch兼容,RTX30系列GPU兼容cuda_哔哩哔哩_bilibili