Ubuntu20.04+RTX4060安装CUDA+cudnn+Pytorch+TF-GPU踩坑

本文提供了RTX4060显卡安装CUDA11.3和cudnn8.2.1的详细步骤,强调了版本兼容性。安装成功后,通过nvcc--version验证CUDA,使用Tensorflow2.6.0和Pytorch1.11.0进行GPU测试,确保环境配置正确。
摘要由CSDN通过智能技术生成

Caution:RTX4060显卡只能适配Cuda11.3以上的版本,我自己安装的是CUDA11.3+cudnn8.2.1

CUDA下载地址:CUDA Toolkit Archive | NVIDIA Developer

cudnn下载地址:

cuDNN Archive | NVIDIA Developer

CUDA在安装时,只选择CUDA toolkit 11.3,其他选项使用空格键切换为空白即可(其他视频截图,并非自己安装的截图,因此时CUDA11.2,但是原理是一样的)

CUDA+cudnn安装成功后,使用命令:nvcc --version, 进行测试,如下显示,则为成功。

Tensorflow-GPU安装2.6.0版本,安装命令:

pip install tensorflow-gpu=2.6.0

pip install tensorflow-gpu==2.6.0 -i https://pypi.mirrors.ustc.edu.cn/simple(速度快)

测试命令:

import tensorflow as tf

print('GPU',tf.test.is_gpu_available())

如下显示,则为成功:

Pytorch安装1.11.0,安装命令:

# CUDA 11.3
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113

测试命令:

import torch
print(torch.cuda.is_available())
 显示如下,则为成功:

 本文只列举了容易踩坑的布置,其余安装步骤均可百度解决,或者参考视频

 linux安装tensorflow,cuda,cudnn安装,pytorch兼容,RTX30系列GPU兼容cuda_哔哩哔哩_bilibili

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值