引言
无穷级数是考研数学一的核心内容,涵盖数项级数、幂级数、傅里叶级数等核心概念。本文系统梳理4大考点,结合公式速查与实战示例,助你高效突破级数难点!
考点一:数项级数敛散性判定
1️⃣ 一般步骤
2️⃣正项级数
1. 基础工具
- 定义法:
计算部分和 s n = ∑ k = 1 n a k s_n = \sum_{k=1}^n a_k sn=∑k=1nak,若 lim n → ∞ s n \lim_{n \to \infty} s_n limn→∞sn存在则收敛。
适用场景:可求和的级数(裂项相消、等比数列等)。
例: ∑ ( 1 k − 1 k + 1 ) \sum \left( \frac{1}{k} - \frac{1}{k+1} \right) ∑(k1−k+11) → s n = 1 − 1 n + 1 → 1 s_n = 1 - \frac{1}{n+1} \to 1 sn=1−n+11→1(收敛)。
2. 判别法(重点!)
- 比较判别法 :若 0 ≤ a n ≤ b n 0 \leq a_n \leq b_n 0≤an≤bn, ∑ b n \sum b_n ∑bn收 ⇒ ∑ a n \sum a_n ∑an 收(大收小收,小散大散)
- 极限形式: lim n → ∞ a n b n = λ \lim_{n \to \infty} \frac{a_n}{b_n} = \lambda limn→∞bnan=λ, λ > 0 \lambda > 0 λ>0 ⇒ 同敛散, λ = 0 \lambda = 0 λ=0 且 ∑ b n \sum b_n ∑bn 收 ⇒ ∑ a n \sum a_n ∑an收
- 比值判别法 : lim n → ∞ a n + 1 a n = ρ \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho limn→∞anan+1=ρ, ρ = 1 \rho = 1 ρ=1时失效, ρ < 1 \rho < 1 ρ<1收; ρ > 1 \rho > 1 ρ>1 散
- 根值判别法 : lim n → ∞ a n n = ρ \lim_{n \to \infty} \sqrt[n]{a_n} = \rho limn→∞nan=ρ, ρ = 1 \rho = 1 ρ=1时失效, ρ < 1 \rho < 1 ρ<1收; ρ > 1 \rho > 1 ρ>1 散
- 积分判别法 : 若 a n = f ( n ) a_n = f(n) an=f(n), f ( x ) f(x) f(x)单调减非负, f ( x ) f(x) f(x)易积分(如 1 n p \frac{1}{n^p} np1), ∫ 1 + ∞ f ( x ) d x \int_1^{+\infty} f(x) dx ∫1+∞f(x)dx收 ⇔ 级数收
3. 常用基准级数
- P级数
∑
k
=
1
n
1
n
p
\sum_{k=1}^n \frac{1}{n^p}
∑k=1nnp1
- p ≤ 1 p \leq 1 p≤1 级数发散
- p > 1 p > 1 p>1 级数收敛
- 几何级数
∑
k
=
2
n
1
n
p
l
n
q
n
\sum_{k=2}^n \frac{1}{n^pln^qn}
∑k=2nnplnqn1
- p < 1 p < 1 p<1 级数发散
- p > 1 p > 1 p>1 级数收敛
- p = 1 , q ≤ 1 p = 1, q \leq 1 p=1,q≤1 级数发散
- p = 1 , q > 1 p = 1, q > 1 p=1,q>1 级数收敛
2️⃣ 交错级数
- 绝对收敛:若 ∑ ∣ a n ∣ \sum |a_n| ∑∣an∣收敛 ⇒ 原级数必收敛
- 条件收敛:若 ∑ ∣ a n ∣ \sum |a_n| ∑∣an∣发散但原级数收敛(如 ∑ ( − 1 ) n 1 n \sum (-1)^n \frac{1}{n} ∑(−1)nn1)
1. 莱布尼茨判别法
若 a n ≥ 0 a_n \geq 0 an≥0 满足:
- 单调递减(即 a n + 1 ≤ a n a_{n+1} \leq a_n an+1≤an)
- lim n → ∞ a n = 0 \lim_{n \to \infty} a_n = 0 limn→∞an=0
则 ∑ ( − 1 ) n − 1 a n \sum (-1)^{n-1} a_n ∑(−1)n−1an 条件收敛。
2. 注意:
- 若不单调或极限非零 → 发散(如 ∑ ( − 1 ) n n n + 1 \sum (-1)^n \frac{n}{n+1} ∑(−1)nn+1n 因 a n ↛ 0 a_n \not\to 0 an→0 发散)
- 收敛可能是条件收敛(需额外验证绝对收敛性)
3️⃣任意项级数(通项符号任意)
1. 绝对收敛与条件收敛
- 绝对收敛:若 ∑ ∣ a n ∣ \sum |a_n| ∑∣an∣收敛 ⇒ 原级数必收敛
- 条件收敛:若 ∑ ∣ a n ∣ \sum |a_n| ∑∣an∣发散但原级数收敛(如 ∑ ( − 1 ) n 1 n \sum (-1)^n \frac{1}{n} ∑(−1)nn1)
2. 发散判定
- 必要条件:若
lim
n
→
∞
a
n
≠
0
\lim_{n \to \infty} a_n \neq 0
limn→∞an=0 ⇒ 级数发散(优先验证!)
例: ∑ n n + 1 \sum \frac{n}{n+1} ∑n+1n因 a n → 1 ≠ 0 a_n \to 1 \neq 0 an→1=0 发散
3.收敛性质
性质 | 结论 |
---|---|
绝对收敛级数 | 任意加括号后仍绝对收敛 |
条件收敛级数 | 加括号可能改变敛散性 |
收敛 + 收敛 | 收敛 |
收敛 + 发散 | 发散 |
4️⃣特殊题型技巧
1. 拆项级数
- 形式: a n = b n − b n + 1 a_n = b_n - b_{n+1} an=bn−bn+1
- 解法:部分和 s n = b 1 − b n + 1 s_n = b_1 - b_{n+1} sn=b1−bn+1 → 收敛性由 lim n → ∞ b n \lim_{n \to \infty} b_n limn→∞bn 决定
2. 抽象级数
- 性质:收敛级数的线性组合仍收敛
- 反例: ∑ a n \sum a_n ∑an收, ∑ b n \sum b_n ∑bn 收 ⇒ ∑ a n b n \sum a_n b_n ∑anbn 不一定收
3. 括号
- 加括号可能引起收敛
- 去括号可能引起发散
考点二:幂级数的收敛域与收敛半径
1️⃣ 收敛半径公式
比值法:
R
=
lim
n
→
∞
∣
a
n
a
n
+
1
∣
R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|
R=n→∞lim
an+1an
根值法:
R
=
1
lim
n
→
∞
∣
a
n
∣
n
R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}
R=limn→∞n∣an∣1
示例:
求
∑
x
n
n
2
\sum \frac{x^n}{n^2}
∑n2xn 的收敛半径。
解:
lim
n
→
∞
∣
1
/
n
2
1
/
(
n
+
1
)
2
∣
=
1
\lim_{n \to \infty} \left| \frac{1/n^2}{1/(n+1)^2} \right| = 1
limn→∞
1/(n+1)21/n2
=1,故
R
=
1
R = 1
R=1。
2️⃣ 收敛域判定
收敛半径 R R R | 判定方法 | 示例 |
---|---|---|
R > 0 R > 0 R>0 | 端点单独验证 | ∑ x n n \sum \frac{x^n}{n} ∑nxn 在 x = 1 x=1 x=1 处发散, x = − 1 x=-1 x=−1 处条件收敛 |
R = 0 R = 0 R=0 | 仅 x = 0 x=0 x=0 处收敛 | ∑ n ! x n \sum n! x^n ∑n!xn |
R = + ∞ R = +\infty R=+∞ | 全体实数收敛 | ∑ x n n ! \sum \frac{x^n}{n!} ∑n!xn |
3️⃣ 逐项积分与求导
性质:
- 逐项积分后收敛半径不变。
- 逐项求导后收敛半径不变,但端点可能变化。
示例:
已知 ∑ x n = x 1 − x \sum x^n = \frac{x}{1-x} ∑xn=1−xx( ∣ x ∣ < 1 |x| < 1 ∣x∣<1),逐项积分得 ∑ x n + 1 n + 1 = − ln ( 1 − x ) \sum \frac{x^{n+1}}{n+1} = -\ln(1-x) ∑n+1xn+1=−ln(1−x),收敛域仍为 ∣ x ∣ < 1 |x| < 1 ∣x∣<1。
考点三:幂级数求和函数
1️⃣ 逐项求导法
步骤:
- 对幂级数逐项求导或积分,化为已知级数形式。注意求和下限是否会发成变化
- 积分还原原函数。
示例:
求 S ( x ) = ∑ n = 1 ∞ n x n − 1 S(x) = \sum_{n=1}^\infty n x^{n-1} S(x)=∑n=1∞nxn−1( ∣ x ∣ < 1 |x| < 1 ∣x∣<1)。
解:逐项积分得 ∫ S ( x ) d x = ∑ x n = x 1 − x \int S(x) dx = \sum x^n = \frac{x}{1-x} ∫S(x)dx=∑xn=1−xx,再求导得 S ( x ) = 1 ( 1 − x ) 2 S(x) = \frac{1}{(1-x)^2} S(x)=(1−x)21。
2️⃣ 微分方程法
示例:
求
S
(
x
)
=
∑
n
=
0
∞
x
n
n
!
S(x) = \sum_{n=0}^\infty \frac{x^n}{n!}
S(x)=∑n=0∞n!xn。
解:已知
S
(
x
)
=
e
x
S(x) = e^x
S(x)=ex,直接验证满足微分方程
S
′
(
x
)
=
S
(
x
)
S'(x) = S(x)
S′(x)=S(x)。
考点四:狄利克雷收敛定理与傅里叶级数
1️⃣ 狄利克雷收敛定理
条件:
- f ( x ) f(x) f(x) 在 [ − π , π ] [-\pi, \pi] [−π,π] 上分段光滑。
- 周期为
2
π
2\pi
2π。
结论:
a 0 2 + ∑ n = 1 ∞ ( a n cos n x + b n sin n x ) = f ( x + ) + f ( x − ) 2 \frac{a_0}{2} + \sum_{n=1}^\infty (a_n \cos nx + b_n \sin nx) = \frac{f(x^+) + f(x^-)}{2} 2a0+n=1∑∞(ancosnx+bnsinnx)=2f(x+)+f(x−)
点类型 | 条件 | S ( x 0 ) S(x_0) S(x0) 与 f ( x 0 ) f(x_0) f(x0) 的关系 |
---|---|---|
连续点 | f ( x 0 − ) = f ( x 0 + ) = f ( x 0 ) f(x_0^-) = f(x_0^+) = f(x_0) f(x0−)=f(x0+)=f(x0) | S ( x 0 ) = f ( x 0 ) S(x_0) = f(x_0) S(x0)=f(x0) |
跳跃间断点 | f ( x 0 − ) ≠ f ( x 0 + ) f(x_0^-) \neq f(x_0^+) f(x0−)=f(x0+) | S ( x 0 ) = f ( x 0 − ) + f ( x 0 + ) 2 S(x_0) = \frac{f(x_0^-) + f(x_0^+)}{2} S(x0)=2f(x0−)+f(x0+) |
极值点/振荡点 | 满足狄利克雷条件 | S ( x 0 ) = f ( x 0 ) S(x_0) = f(x_0) S(x0)=f(x0) |
示例:设 f ( x ) = { 1 , x ≥ 0 − 1 , x < 0 f(x) = \begin{cases} 1, & x \geq 0 \\ -1, & x < 0 \end{cases} f(x)={1,−1,x≥0x<0,其傅里叶级数在 x = 0 x = 0 x=0 处收敛于 1 + ( − 1 ) 2 = 0 \frac{1 + (-1)}{2} = 0 21+(−1)=0。
2️⃣ 傅里叶级数
(1)傅里叶级数展开
对于周期为
2
l
2l
2l 的函数
f
(
x
)
f(x)
f(x),其傅里叶级数展开式为:
f
(
x
)
∼
a
0
2
+
∑
n
=
1
∞
(
a
n
cos
(
n
π
x
l
)
+
b
n
sin
(
n
π
x
l
)
)
f(x) \sim \frac{a_0}{2} + \sum_{n=1}^\infty \left( a_n \cos\left(\frac{n\pi x}{l}\right) + b_n \sin\left(\frac{n\pi x}{l}\right) \right)
f(x)∼2a0+n=1∑∞(ancos(lnπx)+bnsin(lnπx))
其中:
- 基函数: cos ( n π x l ) \cos\left(\frac{n\pi x}{l}\right) cos(lnπx) 和 sin ( n π x l ) \sin\left(\frac{n\pi x}{l}\right) sin(lnπx) 的周期为 2 l 2l 2l。
- 系数公式:需通过积分计算,具体如下。
(2) 余弦项系数
a
n
a_n
an
a
n
=
1
l
∫
−
l
l
f
(
x
)
cos
(
n
π
x
l
)
d
x
(
n
=
1
,
2
,
3
,
…
)
a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx \quad (n = 1, 2, 3, \dots)
an=l1∫−llf(x)cos(lnπx)dx(n=1,2,3,…)
(3) 正弦项系数
b
n
b_n
bn
b
n
=
1
l
∫
−
l
l
f
(
x
)
sin
(
n
π
x
l
)
d
x
(
n
=
1
,
2
,
3
,
…
)
b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin\left(\frac{n\pi x}{l}\right) dx \quad (n = 1, 2, 3, \dots)
bn=l1∫−llf(x)sin(lnπx)dx(n=1,2,3,…)
公式速查表
类型 | 公式/方法 | 适用场景 |
---|---|---|
比值审敛法 | lim n → ∞ a n + 1 a n \lim_{n \to \infty} \frac{a_{n+1}}{a_n} limn→∞anan+1 | 正项级数 |
莱布尼兹判别法 | u n ≥ u n + 1 u_n \geq u_{n+1} un≥un+1 且 lim u n = 0 \lim u_n = 0 limun=0 | 交错级数 |
收敛半径 | R = 1 lim a n n R = \frac{1}{\lim \sqrt[n]{a_n}} R=limnan1 | 幂级数 |
傅里叶系数 | a n = 1 π ∫ − π π f ( x ) cos n x d x a_n = \frac{1}{\pi} \int_{-\pi}^\pi f(x) \cos nx dx an=π1∫−ππf(x)cosnxdx | 周期为 2 π 2\pi 2π 的函数 |
周期为 2 l 2l 2l 的傅里叶级数 | a 0 2 + ∑ n = 1 ∞ ( a n cos n π x l + b n sin n π x l ) \frac{a_0}{2} + \sum_{n=1}^\infty \left( a_n \cos\frac{n\pi x}{l} + b_n \sin\frac{n\pi x}{l} \right) 2a0+∑n=1∞(ancoslnπx+bnsinlnπx) | 任意周期函数 |
偶函数展开 | a 0 2 + ∑ n = 1 ∞ a n cos n π x l \frac{a_0}{2} + \sum_{n=1}^\infty a_n \cos\frac{n\pi x}{l} 2a0+∑n=1∞ancoslnπx | 偶函数 |
奇函数展开 | ∑ n = 1 ∞ b n sin n π x l \sum_{n=1}^\infty b_n \sin\frac{n\pi x}{l} ∑n=1∞bnsinlnπx | 奇函数 |
实战技巧
- 端点检验:收敛半径计算后,务必验证端点敛散性。
- 逐项操作:幂级数求和时,优先尝试逐项求导或积分。
- 对称性简化:奇偶函数傅里叶级数中,仅需计算对应系数。
总结:无穷级数的核心在于灵活应用审敛法、幂级数性质和傅里叶展开。结合几何意义与定理条件,系统攻克级数难题! 🚀
评论区互动:需要深入解析,欢迎留言交流! 💬