1.7无穷级数


引言

无穷级数是考研数学一的核心内容,涵盖数项级数、幂级数、傅里叶级数等核心概念。本文系统梳理4大考点,结合公式速查与实战示例,助你高效突破级数难点!


考点一:数项级数敛散性判定

1️⃣ 一般步骤

在这里插入图片描述

2️⃣正项级数

1. 基础工具
  • 定义法
    计算部分和 s n = ∑ k = 1 n a k s_n = \sum_{k=1}^n a_k sn=k=1nak,若 lim ⁡ n → ∞ s n \lim_{n \to \infty} s_n limnsn存在则收敛。
    适用场景:可求和的级数(裂项相消、等比数列等)。
    ∑ ( 1 k − 1 k + 1 ) \sum \left( \frac{1}{k} - \frac{1}{k+1} \right) (k1k+11) s n = 1 − 1 n + 1 → 1 s_n = 1 - \frac{1}{n+1} \to 1 sn=1n+111(收敛)。
2. 判别法(重点!)
  • 比较判别法 :若 0 ≤ a n ≤ b n 0 \leq a_n \leq b_n 0anbn ∑ b n \sum b_n bn收 ⇒ ∑ a n \sum a_n an 收(大收小收,小散大散)
  • 极限形式: lim ⁡ n → ∞ a n b n = λ \lim_{n \to \infty} \frac{a_n}{b_n} = \lambda limnbnan=λ λ > 0 \lambda > 0 λ>0 ⇒ 同敛散, λ = 0 \lambda = 0 λ=0 ∑ b n \sum b_n bn 收 ⇒ ∑ a n \sum a_n an
  • 比值判别法 : lim ⁡ n → ∞ a n + 1 a n = ρ \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho limnanan+1=ρ ρ = 1 \rho = 1 ρ=1时失效, ρ < 1 \rho < 1 ρ<1收; ρ > 1 \rho > 1 ρ>1
  • 根值判别法 : lim ⁡ n → ∞ a n n = ρ \lim_{n \to \infty} \sqrt[n]{a_n} = \rho limnnan =ρ ρ = 1 \rho = 1 ρ=1时失效, ρ < 1 \rho < 1 ρ<1收; ρ > 1 \rho > 1 ρ>1
  • 积分判别法 : 若 a n = f ( n ) a_n = f(n) an=f(n) f ( x ) f(x) f(x)单调减非负, f ( x ) f(x) f(x)易积分(如 1 n p \frac{1}{n^p} np1), ∫ 1 + ∞ f ( x ) d x \int_1^{+\infty} f(x) dx 1+f(x)dx收 ⇔ 级数收

3. 常用基准级数

  • P级数 ∑ k = 1 n 1 n p \sum_{k=1}^n \frac{1}{n^p} k=1nnp1
    • p ≤ 1 p \leq 1 p1 级数发散
    • p > 1 p > 1 p>1 级数收敛
  • 几何级数 ∑ k = 2 n 1 n p l n q n \sum_{k=2}^n \frac{1}{n^pln^qn} k=2nnplnqn1
    • p < 1 p < 1 p<1 级数发散
    • p > 1 p > 1 p>1 级数收敛
    • p = 1 , q ≤ 1 p = 1, q \leq 1 p=1,q1 级数发散
    • p = 1 , q > 1 p = 1, q > 1 p=1,q>1 级数收敛

2️⃣ 交错级数

  • 绝对收敛:若 ∑ ∣ a n ∣ \sum |a_n| an收敛 ⇒ 原级数必收敛
  • 条件收敛:若 ∑ ∣ a n ∣ \sum |a_n| an发散但原级数收敛(如 ∑ ( − 1 ) n 1 n \sum (-1)^n \frac{1}{n} (1)nn1
1. 莱布尼茨判别法

a n ≥ 0 a_n \geq 0 an0 满足:

  • 单调递减(即 a n + 1 ≤ a n a_{n+1} \leq a_n an+1an
  • lim ⁡ n → ∞ a n = 0 \lim_{n \to \infty} a_n = 0 limnan=0

∑ ( − 1 ) n − 1 a n \sum (-1)^{n-1} a_n (1)n1an 条件收敛。

2. 注意
  • 若不单调或极限非零 → 发散(如 ∑ ( − 1 ) n n n + 1 \sum (-1)^n \frac{n}{n+1} (1)nn+1n a n ↛ 0 a_n \not\to 0 an0 发散)
  • 收敛可能是条件收敛(需额外验证绝对收敛性)

3️⃣任意项级数(通项符号任意)

1. 绝对收敛与条件收敛
  • 绝对收敛:若 ∑ ∣ a n ∣ \sum |a_n| an收敛 ⇒ 原级数必收敛
  • 条件收敛:若 ∑ ∣ a n ∣ \sum |a_n| an发散但原级数收敛(如 ∑ ( − 1 ) n 1 n \sum (-1)^n \frac{1}{n} (1)nn1
2. 发散判定
  • 必要条件:若 lim ⁡ n → ∞ a n ≠ 0 \lim_{n \to \infty} a_n \neq 0 limnan=0 ⇒ 级数发散(优先验证!)
    ∑ n n + 1 \sum \frac{n}{n+1} n+1n a n → 1 ≠ 0 a_n \to 1 \neq 0 an1=0 发散
3.收敛性质
性质结论
绝对收敛级数任意加括号后仍绝对收敛
条件收敛级数加括号可能改变敛散性
收敛 + 收敛收敛
收敛 + 发散发散

4️⃣特殊题型技巧

1. 拆项级数
  • 形式: a n = b n − b n + 1 a_n = b_n - b_{n+1} an=bnbn+1
  • 解法:部分和 s n = b 1 − b n + 1 s_n = b_1 - b_{n+1} sn=b1bn+1 → 收敛性由 lim ⁡ n → ∞ b n \lim_{n \to \infty} b_n limnbn 决定
2. 抽象级数
  • 性质:收敛级数的线性组合仍收敛
  • 反例 ∑ a n \sum a_n an收, ∑ b n \sum b_n bn 收 ⇒ ∑ a n b n \sum a_n b_n anbn 不一定收
3. 括号
  • 加括号可能引起收敛
  • 去括号可能引起发散

考点二:幂级数的收敛域与收敛半径

1️⃣ 收敛半径公式

比值法
R = lim ⁡ n → ∞ ∣ a n a n + 1 ∣ R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| R=nlim an+1an
根值法
R = 1 lim ⁡ n → ∞ ∣ a n ∣ n R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}} R=limnnan 1

示例
∑ x n n 2 \sum \frac{x^n}{n^2} n2xn 的收敛半径。
解: lim ⁡ n → ∞ ∣ 1 / n 2 1 / ( n + 1 ) 2 ∣ = 1 \lim_{n \to \infty} \left| \frac{1/n^2}{1/(n+1)^2} \right| = 1 limn 1/(n+1)21/n2 =1,故 R = 1 R = 1 R=1

2️⃣ 收敛域判定

收敛半径 R R R判定方法示例
R > 0 R > 0 R>0端点单独验证 ∑ x n n \sum \frac{x^n}{n} nxn x = 1 x=1 x=1 处发散, x = − 1 x=-1 x=1 处条件收敛
R = 0 R = 0 R=0 x = 0 x=0 x=0 处收敛 ∑ n ! x n \sum n! x^n n!xn
R = + ∞ R = +\infty R=+全体实数收敛 ∑ x n n ! \sum \frac{x^n}{n!} n!xn

3️⃣ 逐项积分与求导

性质

  • 逐项积分后收敛半径不变。
  • 逐项求导后收敛半径不变,但端点可能变化。
    示例
    已知 ∑ x n = x 1 − x \sum x^n = \frac{x}{1-x} xn=1xx ∣ x ∣ < 1 |x| < 1 x<1),逐项积分得 ∑ x n + 1 n + 1 = − ln ⁡ ( 1 − x ) \sum \frac{x^{n+1}}{n+1} = -\ln(1-x) n+1xn+1=ln(1x),收敛域仍为 ∣ x ∣ < 1 |x| < 1 x<1

考点三:幂级数求和函数

1️⃣ 逐项求导法

步骤

  1. 对幂级数逐项求导或积分,化为已知级数形式。注意求和下限是否会发成变化
  2. 积分还原原函数。
    示例
    S ( x ) = ∑ n = 1 ∞ n x n − 1 S(x) = \sum_{n=1}^\infty n x^{n-1} S(x)=n=1nxn1 ∣ x ∣ < 1 |x| < 1 x<1)。
    解:逐项积分得 ∫ S ( x ) d x = ∑ x n = x 1 − x \int S(x) dx = \sum x^n = \frac{x}{1-x} S(x)dx=xn=1xx,再求导得 S ( x ) = 1 ( 1 − x ) 2 S(x) = \frac{1}{(1-x)^2} S(x)=(1x)21

2️⃣ 微分方程法

示例
S ( x ) = ∑ n = 0 ∞ x n n ! S(x) = \sum_{n=0}^\infty \frac{x^n}{n!} S(x)=n=0n!xn
解:已知 S ( x ) = e x S(x) = e^x S(x)=ex,直接验证满足微分方程 S ′ ( x ) = S ( x ) S'(x) = S(x) S(x)=S(x)


考点四:狄利克雷收敛定理与傅里叶级数

1️⃣ 狄利克雷收敛定理

条件

  1. f ( x ) f(x) f(x) [ − π , π ] [-\pi, \pi] [π,π] 上分段光滑。
  2. 周期为 2 π 2\pi 2π
    结论
    a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) = f ( x + ) + f ( x − ) 2 \frac{a_0}{2} + \sum_{n=1}^\infty (a_n \cos nx + b_n \sin nx) = \frac{f(x^+) + f(x^-)}{2} 2a0+n=1(ancosnx+bnsinnx)=2f(x+)+f(x)
点类型条件 S ( x 0 ) S(x_0) S(x0) f ( x 0 ) f(x_0) f(x0) 的关系
连续点 f ( x 0 − ) = f ( x 0 + ) = f ( x 0 ) f(x_0^-) = f(x_0^+) = f(x_0) f(x0)=f(x0+)=f(x0) S ( x 0 ) = f ( x 0 ) S(x_0) = f(x_0) S(x0)=f(x0)
跳跃间断点 f ( x 0 − ) ≠ f ( x 0 + ) f(x_0^-) \neq f(x_0^+) f(x0)=f(x0+) S ( x 0 ) = f ( x 0 − ) + f ( x 0 + ) 2 S(x_0) = \frac{f(x_0^-) + f(x_0^+)}{2} S(x0)=2f(x0)+f(x0+)
极值点/振荡点满足狄利克雷条件 S ( x 0 ) = f ( x 0 ) S(x_0) = f(x_0) S(x0)=f(x0)

示例:设 f ( x ) = { 1 , x ≥ 0 − 1 , x < 0 f(x) = \begin{cases} 1, & x \geq 0 \\ -1, & x < 0 \end{cases} f(x)={1,1,x0x<0,其傅里叶级数在 x = 0 x = 0 x=0 处收敛于 1 + ( − 1 ) 2 = 0 \frac{1 + (-1)}{2} = 0 21+(1)=0

2️⃣ 傅里叶级数

(1)傅里叶级数展开

对于周期为 2 l 2l 2l 的函数 f ( x ) f(x) f(x),其傅里叶级数展开式为:
f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ ( n π x l ) + b n sin ⁡ ( n π x l ) ) f(x) \sim \frac{a_0}{2} + \sum_{n=1}^\infty \left( a_n \cos\left(\frac{n\pi x}{l}\right) + b_n \sin\left(\frac{n\pi x}{l}\right) \right) f(x)2a0+n=1(ancos(lx)+bnsin(lx))
其中:

  • 基函数 cos ⁡ ( n π x l ) \cos\left(\frac{n\pi x}{l}\right) cos(lx) sin ⁡ ( n π x l ) \sin\left(\frac{n\pi x}{l}\right) sin(lx) 的周期为 2 l 2l 2l
  • 系数公式:需通过积分计算,具体如下。

(2) 余弦项系数 a n a_n an
a n = 1 l ∫ − l l f ( x ) cos ⁡ ( n π x l ) d x ( n = 1 , 2 , 3 , …   ) a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx \quad (n = 1, 2, 3, \dots) an=l1llf(x)cos(lx)dx(n=1,2,3,)
(3) 正弦项系数 b n b_n bn
b n = 1 l ∫ − l l f ( x ) sin ⁡ ( n π x l ) d x ( n = 1 , 2 , 3 , …   ) b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin\left(\frac{n\pi x}{l}\right) dx \quad (n = 1, 2, 3, \dots) bn=l1llf(x)sin(lx)dx(n=1,2,3,)


公式速查表

类型公式/方法适用场景
比值审敛法 lim ⁡ n → ∞ a n + 1 a n \lim_{n \to \infty} \frac{a_{n+1}}{a_n} limnanan+1正项级数
莱布尼兹判别法 u n ≥ u n + 1 u_n \geq u_{n+1} unun+1 lim ⁡ u n = 0 \lim u_n = 0 limun=0交错级数
收敛半径 R = 1 lim ⁡ a n n R = \frac{1}{\lim \sqrt[n]{a_n}} R=limnan 1幂级数
傅里叶系数 a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x a_n = \frac{1}{\pi} \int_{-\pi}^\pi f(x) \cos nx dx an=π1ππf(x)cosnxdx周期为 2 π 2\pi 2π 的函数
周期为 2 l 2l 2l 的傅里叶级数 a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) \frac{a_0}{2} + \sum_{n=1}^\infty \left( a_n \cos\frac{n\pi x}{l} + b_n \sin\frac{n\pi x}{l} \right) 2a0+n=1(ancoslx+bnsinlx)任意周期函数
偶函数展开 a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n π x l \frac{a_0}{2} + \sum_{n=1}^\infty a_n \cos\frac{n\pi x}{l} 2a0+n=1ancoslx偶函数
奇函数展开 ∑ n = 1 ∞ b n sin ⁡ n π x l \sum_{n=1}^\infty b_n \sin\frac{n\pi x}{l} n=1bnsinlx奇函数

实战技巧

  1. 端点检验:收敛半径计算后,务必验证端点敛散性。
  2. 逐项操作:幂级数求和时,优先尝试逐项求导或积分。
  3. 对称性简化:奇偶函数傅里叶级数中,仅需计算对应系数。

总结:无穷级数的核心在于灵活应用审敛法、幂级数性质和傅里叶展开。结合几何意义与定理条件,系统攻克级数难题! 🚀

评论区互动:需要深入解析,欢迎留言交流! 💬

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值