根据图的度数判断图的连通性的Havel-Hakimi定理

原定理:

如果给定了n个数a1,a2,……,an,那么是否有可能是某一个图结点的度数呢?

为了尽量构成一个连通图,我们首先考虑其中度数最多的点,为了解决其连接问题,我们考虑两种情况:

1.连接度数较少的点

2.连接度数较多的点

2方法有一个明显的好处,就是“尽量保存多的点",它的作用就是能够保证之后的数字无论多大,都存在足够多的点与其相抵消,而且因为是消除大数字的点,也有很大的削弱大数字的效果。

所以方法就是进行递归操作。

一下是代码:

#include <vector>
using namespace std;

bool cn(vector<int>& vi) {
    if(vi[0] == true) return true;
    for(int i = 1; i < vi.size(); i++) {
        vi[i]--;
        if(v[i] < 0) return false;
    }
    vi.erase(vi.begin(), vi.begin() + 1);
    return cn(vi);
}

bool judge_connect(vector<int> vi) {
    sort(vi.begin(), vi.end());
    return cn(vi);
}


未进行验证。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值