数论剩余系学习

这篇博客探讨了数论中的剩余系定理,包括它们的证明和应用。内容涵盖了同余定理、费马小定理、素性测定以及在信息安全数学中的角色,如完全剩余系和简化剩余系的概念及其性质。
摘要由CSDN通过智能技术生成

剩余系定理三:

若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(mod m)时,有a≡b(mod m);

证明:ac≡bc(mod m) <=> (ac - bc)≡0(mod m) <=> (a - b) * c ≡ 0 (mod m),如果(c, m) = 0,那么一定有 m | (a - b),也就是(a - b) ≡ 0 (mod m) 

<=> a ≡ b (mod m);

形象理解:如果把m看成一个环形跑道,一匹马每一步走c米,起点都是0,那么走a步和走b步最终停在了同一个位置,那么一定有m | (a - b)。因为(c, m) = 1,那么在1~m这m步内这匹马一定停在了跑道上不同的m个位置,同时也遍历了跑道的m个位置,所以说a和b一定相差m的整数倍。

如果把a和b看成跨步不同的马,同时走c步,那就很难理解了。

剩余系定理七:

设m是一个整数,且m>1,b是一个整数且(m,b)=1。如果a1,a2,a3,……,am是模m的一个完全剩余系,则ba[1]&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值