【组合数学】排列组合 ( 排列组合内容概要 | 选取问题 | 集合排列 | 集合组合 )

本文详细介绍了排列组合的概念,包括选取问题的四种类型:元素不重复的有序选取(排列)、无序选取(组合)、元素可重复的有序选取(多重集排列)和无序选取(多重集组合)。重点讲解了集合排列的计算公式P(n,r),环排列的计算方法以及集合组合的计算公式C(n,r),并提供了组合恒等式C(n,r)=C(n,n-r)。这些概念和公式是组合数学的基础,对于解决计数问题至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



参考博客 :





一、排列组合内容概要



排列组合内容概要 :

  • 选取问题
  • 集合的排列与组合问题
  • 基本计数公式应用
  • 多重集的排列与组合问题




二、选取问题



n n n 元集 S S S , S S S 集合中选取 r r r 个元素 ;

根据 元素是否允许重复 , 选取过程是否有序 , 将选取问题分为四个子类型 :

元素不重复元素可以重复
有序选取集合排列 P ( n , r ) P(n,r) P(n,r)多重集排列
无序选取集合组合 C ( n , r ) C(n,r) C(n,r)多重集组合

选取问题中 :

  • 不可重复的元素 , 有序的选取 , 对应 集合的排列
  • 不可重复的元素 , 无序的选取 , 对应 集合的组合
  • 可重复的元素 , 有序的选取 , 对应 多重集的排列
  • 可重复的元素 , 无序的选取 , 对应 多重集的组合




三、集合排列



n n n 元集 S S S , 从 S S S 集合中 有序 , 不重复 选取 r r r 个元素 ,

该操作称为 S S S 集合的一个 r − r- r 排列 ,

S S S 集合的 r − r- r 排列记作 P ( n , r ) P(n, r) P(n,r)

P ( n , r ) = { n ! ( n − r ) ! n ≥ r 0 n < r P(n,r)=\begin{cases} \dfrac{n!}{(n-r)!} & n \geq r \\\\ 0 & n < r \end{cases} P(n,r)=(nr)!n!0nrn<r


该排列公式使用乘法法则得到 : 将整个排列看做 r r r 个位置

  • 1 1 1 个位置有 n n n 种放置方法 , 即从当前的 n n n 个元素中任选一个 , 剩下 n − 1 n-1 n1 个元素 ;
  • 2 2 2 个位置有 n − 1 n-1 n1 种放置方法 , 即从当前的 n − 1 n-1 n1 个元素中任选一个 , 剩下 n − 2 n-2 n2 个元素 ;
  • 3 3 3 个位置有 n − 2 n-2 n2 种放置方法 , 即从当前的 n − 2 n-2 n2 个元素中任选一个 , 剩下 n − 3 n-3 n3 个元素 ;

⋮ \vdots

  • r r r 个位置有 n − ( r − 1 ) = n − r + 1 n-(r-1) = n - r + 1 n(r1)=nr+1 种放置方法 , 即从当前的 n − r + 1 n - r + 1 nr+1 个元素中任选一个 , 剩下 n − r n-r nr 个元素 ;

0 ! = 1 0! = 1 0!=1





四、环排列



n n n 元集 S S S , 从 S S S 集合中 有序 , 不重复 选取 r r r 个元素 ,

S S S 集合的 r − r- r 环排列数 = P ( n , r ) r = n ! r ( n − r ) ! = \dfrac{P(n,r)}{r} = \dfrac{n!}{r (n-r)!} =rP(n,r)=r(nr)!n!


r r r 个不同的线性排列 , 相当于同一个环排列 ;

一个环排列 , 从任意位置剪开 , 可以构成 r r r 种不同的线性排列 ;





五、集合组合



n n n 元集 S S S , 从 S S S 集合中 无序 , 不重复 选取 r r r 个元素 ,

该操作称为 S S S 集合的一个 r − r- r 组合 ,

S S S 集合的 r − r- r 组合记作 C ( n , r ) C(n, r) C(n,r)

C ( n , r ) = { P ( n , r ) r ! = n ! r ! ( n − r ) ! n ≥ r 0 n < r C(n,r)=\begin{cases} \dfrac{P(n,r)}{r!} = \dfrac{n!}{r!(n-r)!} & n \geq r \\\\ 0 & n < r \end{cases} C(n,r)=r!P(n,r)=r!(nr)!n!0nrn<r


r − r- r 排列也可以这样理解 ( 先组合后排列 ) : 选出 r r r 个有序的排列 C ( n , r ) C(n,r) C(n,r) , 可以先将其 r r r 个无序的选择做出来 , 然后再对选择好的元素进行全排列 C ( n , r ) r ! = P ( n , r ) C(n,r) r! = P(n,r) C(n,r)r!=P(n,r) ;


组合恒等式 :

C ( n , r ) = C ( n , n − r ) C(n,r) = C(n, n-r) C(n,r)=C(n,nr)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值