【组合数学】多项式定理 ( 多项式定理 | 多项式定理证明 | 多项式定理推论 1 项数是非负整数解个数 | 多项式定理推论 2 每项系数之和 )





一、多项式定理



多项式定理 :

n n n 为正整数 , x i x_i xi 为实数 , i = 1 , 2 , ⋯   , t i=1,2,\cdots,t i=1,2,,t

     ( x 1 + x 2 + ⋯ + x t ) n \ \ \ \ (x_1 + x_2 + \cdots + x_t)^n     (x1+x2++xt)n

= ∑ 满 足 n 1 + n 2 + ⋯ + n t = n 非 负 整 数 解 个 数 ( n n 1 n 2 ⋯ n t ) x 1 n 1 x 2 n 2 ⋯ x t n t = \sum\limits_{满足 n_1 + n_2 + \cdots + n_t = n 非负整数解个数}\dbinom{n}{n_1 n_2 \cdots n_t}x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t} =n1+n2++nt=n(n1n2ntn)x1n1x2n2xtnt


上述多项式有 t t t 个项 , 这 t t t 项相加的 n n n 次方 ;





二、多项式定理 证明



多项式中 ( x 1 + x 2 + ⋯ + x t ) n (x_1 + x_2 + \cdots + x_t)^n (x1+x2++xt)n :


分步进行如下处理 :

  • 1 1 1 步 : n n n 个因式中 , 选 n 1 n_1 n1 个因式 , 每个因式贡献 1 1 1 x 1 x_1 x1 , 总共贡献 n 1 n_1 n1 x 1 x_1 x1 , 选取方法有 ( n n 1 ) \dbinom{n}{n_1} (n1n) 种 ;

  • 2 2 2 步 : n − n 1 n-n_1 nn1 个因式中 , 选 n 2 n_2 n2 个因式 , 每个因式贡献 1 1 1 x 2 x_2 x2 , 总共贡献 n 2 n_2 n2 x 2 x_2 x2 , 选取方法有 ( n − n 1 n 2 ) \dbinom{n-n_1}{n_2} (n2nn1) 种 ;

⋮ \vdots

  • t t t 步 : n − n 1 − n 2 − ⋯ − n t − 1 n-n_1-n_2 - \cdots -n_{t-1} nn1n2nt1 个因式中, 选 n t n_t nt 个因式 , 每个因式贡献 1 1 1 x t x_t xt , 总共贡献 n t n_t nt x t x_t xt , 选取方法有 ( n − n 1 − n 2 − ⋯ − n t − 1 n t ) \dbinom{n-n_1-n_2 - \cdots -n_{t-1}}{n_t} (ntnn1n2nt1) 种 ;

根据分步计数原理 , 乘法法则 , 将上面每步的种类个数相乘 , 就是所有的种类个数 :

     ( n n 1 ) ( n − n 1 n 2 ) ( n − n 1 − n 2 − ⋯ − n t − 1 n t ) \ \ \ \ \dbinom{n}{n_1} \dbinom{n-n_1}{n_2} \dbinom{n-n_1-n_2 - \cdots -n_{t-1}}{n_t}     (n1n)(n2nn1)(ntnn1n2nt1)


展开后 , 很多都可以约掉 , 最终得到 :


= n ! n 1 ! n 2 ! ⋯ n t ! =\cfrac{n!}{n_1! n_2! \cdots n_t!} =n1!n2!nt!n!


注意上面的式子是多重集的全排列数


= ( n n 1 n 2 ⋯ n t ) =\dbinom{n}{n_1 n_2 \cdots n_t} =(n1n2ntn)





三、多项式定理 推论 1



多项式定理 推论 1 :

上述多项式定理中 , 不同的项数 是方程

n 1 + n 2 + ⋯ + n t = n n_1 + n_2 + \cdots + n_t = n n1+n2++nt=n

非负整数解个数 C ( n + t − 1 , n ) C(n + t -1 , n) C(n+t1,n)



证明过程 :

1 . 每一项之前的系数 ( n n 1 n 2 ⋯ n t ) \dbinom{n}{n_1 n_2 \cdots n_t} (n1n2ntn) 含义 :

  • n 1 n_1 n1 代表 x 1 x_1 x1 的指数 , n 1 n_1 n1 相当于有多少个式子 , 在相乘的时候 , 取了 x 1 x_1 x1

  • n 2 n_2 n2 代表 x 2 x_2 x2 的指数 , n 2 n_2 n2 相当于有多少个式子 , 在相乘的时候 , 取了 x 2 x_2 x2

⋮ \vdots

  • n t n_t nt 代表 x t x_t xt 的指数 , n t n_t nt 相当于有多少个式子 , 在相乘的时候 , 取了 x t x_t xt


2 . 一一对应关系 :

n 1 , n 2 , ⋯   , n t n_1, n_2, \cdots , n_t n1,n2,,nt 的一组不同的选择 , 相当于

n 1 + n 2 + ⋯ + n t = n n_1 + n_2 + \cdots + n_t = n n1+n2++nt=n

的一个解 , 对应了不同的 x 1 , x 2 , ⋯   , x n x_1 , x_2, \cdots, x_n x1,x2,,xn 之前的项 ;


三个对应关系 :

不同的解 , n 1 , n 2 , ⋯   , n t n_1, n_2, \cdots , n_t n1,n2,,nt 配置不一样 , 这些项 不同的配置个数 ,

相当于 n 1 + n 2 + ⋯ + n t = n n_1 + n_2 + \cdots + n_t = n n1+n2++nt=n 的非负整数解个数 ,

又等同于 多项式 展开后的 项的个数 ;


因此求出 n 1 + n 2 + ⋯ + n t = n n_1 + n_2 + \cdots + n_t = n n1+n2++nt=n 的非负整数解个数 ,

就对应了 n 1 , n 2 , ⋯   , n t n_1, n_2, \cdots , n_t n1,n2,,nt 不同配置的个数 ,

对应了 多项式展开后项的个数 ,

结果是 C ( n + t − 1 , n ) C(n + t -1 , n) C(n+t1,n)


该数还是多重集的组合数


推导过程 参考多重集组合问题 :
多重集 :
S = { n 1 ⋅ a 1 , n 2 ⋅ a 2 , ⋯   , n k ⋅ a k } ,     0 ≤ n i ≤ + ∞ S = \{ n_1 \cdot a_1 , n_2 \cdot a_2 , \cdots , n_k \cdot a_k \} , \ \ \ 0 \leq n_i \leq +\infty S={n1a1,n2a2,,nkak},   0ni+
r r r 种元素的组合 , r ≤ n i r \leq n_i rni , 推导过程如下 :
在这里插入图片描述
k k k 种元素中 , 取 r r r 种元素 , 每种元素取 0 ∼ r 0 \sim r 0r 个不等的元素 ,
使用 k − 1 k-1 k1 个分割线分割 k k k 种元素的位置 , k − 1 k - 1 k1 个分割线相当于组成了 k k k 个盒子 , 在每个盒子中放 0 ∼ r 0 \sim r 0r 个不等的元素 ,
放置的总元素的个数是 r r r 个 , 分割线个数是 k − 1 k-1 k1 个 , 这里就产生了一个组合问题 , k − 1 k-1 k1 个分割线 和 r r r 个元素之间 , 选取 r r r 个元素 , 就是 多重集的 r ≤ n i r \leq n_i rni 情况下的 组合个数 ;
结果是 :
N = C ( k + r − 1 , r ) N= C(k + r - 1, r) N=C(k+r1,r)
参考 : 【组合数学】排列组合 ( 多重集组合数 | 所有元素重复度大于组合数 | 多重集组合数 推导 1 分割线推导 | 多重集组合数 推导 2 不定方程非负整数解个数推导 )





四、多项式定理 推论 2



多项式定理 推论 3 :

∑ ( n n 1 n 2 ⋯ n t ) = t n \sum\dbinom{n}{n_1 n_2 \cdots n_t} = t^n (n1n2ntn)=tn



证明过程 :

多项式定理中

     ( x 1 + x 2 + ⋯ + x t ) n \ \ \ \ (x_1 + x_2 + \cdots + x_t)^n     (x1+x2++xt)n

= ∑ 满 足 n 1 + n 2 + ⋯ + n t = n 非 负 整 数 解 个 数 ( n n 1 n 2 ⋯ n t ) x 1 n 1 x 2 n 2 ⋯ x t n t = \sum\limits_{满足 n_1 + n_2 + \cdots + n_t = n 非负整数解个数}\dbinom{n}{n_1 n_2 \cdots n_t}x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t} =n1+n2++nt=n(n1n2ntn)x1n1x2n2xtnt


如果将 x 1 = x 2 = ⋯ = x t = 1 x_1 = x_2 = \cdots = x_t = 1 x1=x2==xt=1 ,

就可以得到

     ( 1 + 1 + ⋯ + 1 ) n \ \ \ \ (1 + 1 + \cdots + 1)^n     (1+1++1)n

= ∑ 满 足 n 1 + n 2 + ⋯ + n t = n 非 负 整 数 解 个 数 ( n n 1 n 2 ⋯ n t ) 1 n 1 1 n 2 ⋯ 1 n t = \sum\limits_{满足 n_1 + n_2 + \cdots + n_t = n 非负整数解个数}\dbinom{n}{n_1 n_2 \cdots n_t}1^{n_1}1^{n_2}\cdots 1^{n_t} =n1+n2++nt=n(n1n2ntn)1n11n21nt

= ∑ 满 足 n 1 + n 2 + ⋯ + n t = n 非 负 整 数 解 个 数 ( n n 1 n 2 ⋯ n t ) = \sum\limits_{满足 n_1 + n_2 + \cdots + n_t = n 非负整数解个数}\dbinom{n}{n_1 n_2 \cdots n_t} =n1+n2++nt=n(n1n2ntn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值