【计算理论】可判定性 ( 丘奇-图灵论题 | 可判定性引入 | 图灵机语言 | 图灵机结果 | 判定机 | 部分函数与全部函数 | 可判定性定义 )

本文探讨了丘奇-图灵论题,介绍了可判定性的概念,详细解释了图灵机语言及其计算结果,特别关注了判定机的角色,并区分了部分函数与全部函数。核心内容围绕图灵机模型在计算理论中的地位和判定性定义的实质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >





一、丘奇-图灵论题



为算法提供严格的数学模型 , 除了图灵机之外 , 还有其它的 3 3 3 种数学模型 :

可计算函数 ,数学方向 ;

Lambda 演算 , 程序语言方向 ;

登记计算机 ( Register Machine ) , 计算理论方向 ;


所有的数学模型 都为算法提供了严格的数学模型 , 这些数学模型之间是相互等价的 , 这是一个论题 , 不需要证明 ;

图灵机为算法提供了严格的数学定义 , 不需要证明 ;


丘奇-图灵论题 : 图灵机是计算的极限 , 是算法的严格的数学定义 ;





二、可判定性引入



经典的计算理论有 3 3 3 个基本概念 , 算法 ( Algorithm ) , 可判定性 ( Decidability ) , 有效性 ( Efficiency ) ;

之前讲的 都是 算法 ( Algorithm ) 范畴的 ;


同时 希尔伯特纲领 中 , 也要求了判定算法 , 希望存在一个算法 , 帮助判定任何一个数学命题的真假 ;

参考博客 : 【计算理论】图灵机 ( 图灵机引入 | 公理化 | 希尔伯特纲领 | 哥德尔不完备定理 | 原始递归函数 )





三、图灵机语言



给定一个字符串 , 将字符串写在带子上 , 让图灵机从开始状态 , 开始位置进行计算 ,

如果在计算过程中的 某个时刻 , 图灵机进入接受状态 , 那么称 该图灵机是接受这个字符串的 ;


将图灵机 M \rm M M接受的所有字符串 w \rm w w 都放在一起 , 组成一个 集合 L \rm L L , 则该集合就是 图灵机 M M M 的语言 ;

使用符号化表示为 : L ( M ) = {   w   ∣   M 接 受 w 字 符 串   } \rm L(M) = \{ \ w \ | \ M 接受 w 字符串 \ \} L(M)={ w  Mw }


图灵机 计算模型 , 可以转换成语言 ;





四、图灵机结果



图灵机在 字符串 w \rm w w 上进行计算 , 可能有 3 3 3 种不同的结果 :

① 图灵机进入 接受状态 , 接受该字符串

② 图灵机进入 拒绝状态 , 不接受该字符串

③ 图灵机进入 L o o p \rm Loop Loop 不停机状态 , 出现循环


停机问题 , 在计算机科学中很重要 , 尽量避免出现 Loop 不停机状态 ;





五、判定机



简化图灵机 , 只研究特殊图灵机 , 该 特殊图灵机 在所有的字符串上 , 都会停机 , 任意给一个字符串 , 图灵机在该字符串上进行计算 , 要么进入接受状态 , 要么进入拒绝状态 ;

这种特殊的图灵机 , 被称为 “判定机” ;





五、部分函数与全部函数



部分函数 : 任意给定一个图灵机 , 对应一个 部分函数 , 给这个函数一个输入值 , 不会有结果 ; 图灵机进入 接受 / 拒绝 状态就有结果 , 进入 Loop 状态就不会有结果 ;

全部函数 : 任意给定一个输入值 , 都有唯一的输出值与之对应 , 这是函数 ; 这种函数称为 全部函数 ;


这里研究的特殊的图灵机 “判定机” , 判定机 只会进入 接受 / 拒绝 状态 , 因此判定机对应的是一个全部函数 ;





六、可判定性定义



如果一个语言是 图灵-可判定的 , 那么一定存在一个 判定机 判定该语言 ;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值