【数字信号处理】序列傅里叶变换 ( 基本序列的傅里叶变换 | 单位脉冲序列 δ(n) 傅里叶变换 )





一、单位脉冲序列 傅里叶变换



单位脉冲序列 δ ( n ) \delta (n) δ(n) 的傅里叶变换 :



傅里叶变换公式 : 根据 x ( n ) x(n) x(n) 序列 X ( e j ω ) 傅 里 叶 变 换 X(e^{j\omega}) 傅里叶变换 X(ejω) ,

X ( e j ω ) = ∑ n = − ∞ + ∞ x ( n ) e − j ω n X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j \omega n} X(ejω)=n=+x(n)ejωn


单位脉冲函数 ( 单位冲击函数 ) 对应的 函数图像 如下 : 横轴是 n n n , 纵轴是 δ ( n ) \delta (n) δ(n) ;

  • n = 0 n = 0 n=0 时 , δ ( n ) = 1 \delta (n) = 1 δ(n)=1
  • n = 1 n = 1 n=1 时 , δ ( n ) = 0 \delta (n) = 0 δ(n)=0
    在这里插入图片描述

δ ( n ) \delta (n) δ(n) 带入到 傅里叶变换 公式中 ,

  • n n n 不为 0 0 0 时 , δ ( n ) = 0 \delta (n) = 0 δ(n)=0 , 这些项都是 0 0 0 ;
  • n = 0 n = 0 n=0 时 , δ ( n ) e − j ω n = 1 \delta(n) e^{-j \omega n} = 1 δ(n)ejωn=1 ;

最终 :

S F T [ δ ( n ) ] = ∑ n = − ∞ + ∞ δ ( n ) e − j ω n = 1 SFT[ \delta (n) ]=\sum_{n=-\infty}^{+\infty} \delta(n) e^{-j \omega n} = 1 SFT[δ(n)]=n=+δ(n)ejωn=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值