#由于原始数据没有提供对应的测试样本用于评估模型性能,
#因此需要对带有标记的数据进行分割。通常情况下,25%的数据会作为测试集,其余75%的数据用于训练,如代码
#准备良/恶性乳腺癌肿瘤训练、测试数据。
#from sklearn.cross_validation import train_test_split #用于分割数据。
from sklearn.model_selection import train_test_split
#随机采用25%的数据用于测试,剩下的75%用于构建训练集合
X_train,X_test,y_train,y_test=train_test_split(data[colum_names[1:10]],data[colum_names[10]],test_size=0.25,random_state=33)
#查验训练样本的数量和类别分布
print y_train.value_counts()
#查验测试样本的数量和类别分布
print y_test.value_counts()
02-《机器学习及实践》学习之数据训练,测试数据
最新推荐文章于 2023-08-05 17:50:55 发布