在python中执行
import tensorflow as tf
tf.__version__
获取到我的tf版本为1.4.0
我在Tensorflow中文社区学习的时候,在执行下面的基础代码时(我已经修改为在python3.6下可以运行):
import tensorflow as tf
import numpy as np
# 使用 NumPy 生成假数据(phony data), 总共 100 个点.
x_data = np.float32(np.random.rand(2, 100)) # 随机输入
y_data = np.dot([0.100, 0.200], x_data) + 0.300
# 构造一个线性模型
#
b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
y = tf.matmul(W, x_data) + b
# 最小化方差
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
# 初始化变量
init = tf.global_variables_initializer()
# 启动图 (graph)
sess = tf.Session();
sess.run(init);
# 拟合平面
for step in range(0, 201):
sess.run(train)
if step %