如何在tensorflow中屏蔽Debug信息

在使用TensorFlow 1.4.0时,执行代码会输出大量Debug信息和设备查找信息。要解决此问题,可以在Python 3.6环境下通过在代码中添加特定指令来屏蔽这些输出。参考自StackOverflow的相关解答。
摘要由CSDN通过智能技术生成

在python中执行

import tensorflow as tf
tf.__version__

获取到我的tf版本为1.4.0

我在Tensorflow中文社区学习的时候,在执行下面的基础代码时(我已经修改为在python3.6下可以运行):

import tensorflow as tf
import numpy as np

# 使用 NumPy 生成假数据(phony data), 总共 100 个点.
x_data = np.float32(np.random.rand(2, 100)) # 随机输入
y_data = np.dot([0.100, 0.200], x_data) + 0.300

# 构造一个线性模型
# 
b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
y = tf.matmul(W, x_data) + b

# 最小化方差
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

# 初始化变量
init = tf.global_variables_initializer()

# 启动图 (graph)
sess = tf.Session();
sess.run(init);

# 拟合平面
for step in range(0, 201):
    sess.run(train)
    if step % 
### 回答1: TensorFlow 1.15.5是一个支持深度学习的开源框架,whl包是Python的一个软件包格式。下面是关于如何调试TensorFlow 1.15.5 whl包的一些方法: 1. 安装TensorFlow 1.15.5 whl包:首先,您需要从官方网站或源代码库下载TensorFlow 1.15.5的whl包。然后,使用pip命令将whl包安装到您的Python环境。例如,可以使用以下命令安装: ``` pip install tensorflow-1.15.5.whl ``` 2. 配置调试环境:为了能够调试TensorFlow代码,您需要配置合适的调试环境。例如,可以使用集成开发环境(IDE)如PyCharm或Visual Studio Code,这些IDE有强大的调试功能。在IDE打开您的TensorFlow项目,并确保已添加必要的调试配置。 3. 设置断点:在您想要调试的TensorFlow代码设置断点。断点是您希望程序在执行到特定位置时暂停的地方。您可以在IDE的代码行上单击右侧以设置断点。您可以设置多个断点以在不同位置进行调试。 4. 启动调试:通过IDE或命令行启动调试会话。这将使得当TensorFlow代码执行到断点处时,代码会停止并等待您逐步执行。如果您使用的是IDE,可以使用调试工具栏上的“启动调试”按钮来开始调试。如果使用命令行,可以使用适当的命令来启动调试会话。 5. 调试过程:一旦调试会话启动,您将能够逐步执行代码。您可以使用“执行一行”、“下一步”或“跳到下一个断点”等命令在代码前进。这样,您就可以观察代码的执行并检查变量的值、调用栈等信息,以找出问题所在。 6. 修复问题:一旦您找到了问题所在,您可以相应地进行修复。这可能包括更改代码、修改参数、调整模型等。在对问题进行修复后,您可以继续执行代码直至完成。 综上所述,通过安装TensorFlow 1.15.5的whl包并在合适的调试环境设置断点,并逐步执行代码,您可以方便地调试TensorFlow 1.15.5的应用程序。 ### 回答2: TensorFlow 1.15.5 debug whl包是一个特殊的Python安装包,用于调试TensorFlow 1.15.5版本的源代码。调试包包含了额外的调试符号,允许开发人员在调试他们的代码时获得更多的信息。 安装TensorFlow 1.15.5 debug whl包时,需要首先使用pip或者conda创建一个虚拟环境,并确保已经正确安装了TensorFlow 1.15.5的正常版本。然后,通过pip命令或者conda命令安装debug whl包。安装完成后,可以在虚拟环境进行调试工作。 使用TensorFlow 1.15.5 debug whl包进行调试时,可以在代码设置断点,并一步一步地执行代码。通过查看变量的值、函数的调用堆栈等信息,可以帮助开发人员找出代码的问题。此外,调试包还提供了更详细的错误报告,使得问题可以更快地被定位和解决。 然而,需要注意的是,由于debug whl包包含了额外的调试符号,因此它的体积会比正常版本大很多。在实际使用时,应该根据需要选择安装debug whl包还是正常版本的TensorFlow。 总结而言,TensorFlow 1.15.5 debug whl包是一个供开发人员调试代码的特殊Python安装包,安装后可以提供更详细的调试信息,并帮助开发人员定位和解决代码的问题。 ### 回答3: TensorFlow是一个非常流行的机器学习框架,它可以帮助开发者快速构建和训练各种深度学习模型。在机器学习的过程,经常会遇到一些bug或者问题,因此为了方便调试和排除这些问题,TensorFlow提供了一个debug whl包。 首先,debug whl包是一个构建在TensorFlow源代码基础上的特殊版本,它包含了额外的调试工具和符号信息以帮助开发者定位和解决问题。这个包通常用于在开发或调试过程使用,它可以提供更多关于TensorFlow内部运行状态的信息。 使用debug whl包,开发者可以获得更详细的错误信息,以快速定位问题所在。当遇到bug时,开发者可以通过调试器(如GDB)在代码设置断点,观察变量的值以及程序的执行状态。另外,debug whl包还可以显示TensorFlow的内部日志信息,包括模型计算图和运行时的操作,这对于理解和优化代码非常有帮助。 为了使用debug whl包,首先需要下载合适版本的包文件,并通过pip安装到Python环境。安装完成后,可以通过导入tensorflow模块来使用调试功能。在代码,可以使用TensorFlow提供的调试工具和函数来执行调试操作,如设置断点、查看变量和日志信息等。 总之,TensorFlowdebug whl包是一个帮助开发者调试和解决问题的工具,它提供了更多的调试功能和信息。通过使用debug whl包,开发者可以更快地定位和解决TensorFlow的bug,提高开发效率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值