【tensorflow】打印Tensorflow graph中的所有需要训练的变量--tf.trainable_variables()

一般来说,打印tensorflow变量的函数有两个:
tf.trainable_variables () 和 tf.all_variables()
不同的是:
tf.trainable_variables () 指的是需要训练的变量
tf.all_variables() 指的是所有变量

一般而言,我们更关注需要训练的训练变量:
值得注意的是,在输出变量名时,要对整个graph进行初始化

一、打印需要训练的变量名称

variable_names = [v.name for v in tf.trainable_variables()]
print(variable_names)

二、打印需要训练的变量名称和变量值

variable_names = [v.name for v in tf.trainable_variables()]
values = sess.run(variable_names
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值