背包问题变体之分组背包

什么是分组背包

定义:分组背包问题是背包问题的一个变体,与传统的背包问题不同之处在于,物品被划分为不同的组,每个组内的物品具有一定的关联性或者限制性。在解决分组背包问题时,需要考虑每个组内的物品如何选择,以及在选择时需要满足的约束条件。

简单来说,就是给你N组物品,然后每一组至多选择一个物品(当然可以不选),每个物品都有自己的体积和价值。现在你有一个容量为M的背包,让你用这个背包装物品,使得总价值最大

如何思考

类似于01背包问题,对于每个物品都只有两种选择:选or不选。分组背包只是在01背包问题上加了个对物品分组的限制条件,但我们仍然可以用01背包的思路去思考分组背包如何解决。

我们定义一个dp数组:dp[i][j]。其含义是:当前考虑第 i 组,背包容量为 j。对于这个状态,我们就需要去对第 i 组进行枚举,考虑选哪一个物品(或者不选)最优。我们用 v[i][k] 表示第 i 组的第 k 个物品,w[i][k] 表示它的价值,那么状态转移方程就可以是:

​
if (j >= v[i][k]) {
    dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i][k]] + w[i][k]);
}

根据以上状态转移方程,再结合01背包的遍历顺序,我们可以写出以下代码:

for (int i = 1; i <= n; i++) //遍历所有组
    for (int j = 0; j <= m; j++) //遍历背包容量
        for (int k = 1; k <= s[i]; k++) //遍历每组中每个元素
            if (j >= v[i][k]) {
                dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i][k]] + w[i][k]);
            }

这里我们还可以不使用二维数组,对空间进一步优化。因为每次进行状态转移时,只会用到前一组的dp值,所以数组的第一维(表示组)可以利用滚动数组处理掉。但是当我们降维之后,需要对循环的遍历顺序做出一些改变:我们需要对背包容量的遍历作出修改,在上述代码中背包容量是从小到大遍历的,使用一维dp数组后我们需要改成从大到小遍历。因为倘若我们仍然从小到大遍历,会对后面的数据产生数据污染

这里只靠想的话可能很抽象,可以参考这一篇博客的讲解:【动态规划】01背包问题(滚动数组 + 手画图解)-CSDN博客


例题

描述

厦门大学的GPA (绩点)计算规则一直是同学们非常关心的问题。每门考试成绩为百分制,则分数与绩点对应关系如下:

90~100 4.0

85~89 3.7

81~84 3.3

78~80 3.0

75~77 2.7

72~74 2.3

68~71 2.0

64~67 1.7

60~63 1.0

0~59 0.0

某位同学一共参加了4门考试,给定四门考试的总分,请问在最优情况下,4门考试绩点的和最高是多少?

输入

输入4门考试的总分n,0 ≤ n ≤ 400。

输出

输出最优情况下,4门考试绩点之和的最高值。结果保留一位小数。

题目来源:xmuoj | 厦大GPA


题意翻译:给你一个容量确定的背包,现有若干分组,每个分组里的物品价值都相同,不同分组的物品价值不同,只能选4个物品,问:最终能装的最大价值是多少。

这是一道典型的分组背包问题,对于每个科目,我们取当前可以取的最大绩点分数范围的下界,来达到最高性价比即可。参考代码如下:

#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;

//分数区间下界
int V[11] = {0, 90, 85, 81, 78, 75, 72, 68, 64, 60, 0};
//绩点
double A[11] = {0, 4.0, 3.7, 3.3, 3.0, 2.7, 2.3, 2.0, 1.7, 1.0, 0.0};
double dp[405][405];

int main() {
	int v;
	while (cin >> v) {
		for (int i = 1; i <= 4; ++i) {//第i组背包
			for (int j = 0; j <= v; ++j) { //现在体积
				for (int k = 1; k <= 10; ++k) {//选择前j个物品
					if (j >= V[k]) {
						dp[i][j] = max(dp[i][j], dp[i - 1][j - V[k]] + A[k]);
					} 
				}
			}
		}
		printf("%.1lf\n", dp[4][v]);
        //重置dp数组
        for (int i = 0; i < 405; ++i)
            for (int j = 0; j < 405; ++j)
                dp[i][j] = 0;
	}
    //system("pause");
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YUKIPEDIA~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值