滑动窗口最大值(优先队列)
给你一个整数数组 nums
,有一个大小为 k
的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k
个数字。滑动窗口每次只向右移动一位。
返回 滑动窗口中的最大值 。
示例 1:
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
示例 2:
输入:nums = [1], k = 1
输出:[1]
提示:
1 <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4
1 <= k <= nums.length
思路
与之前几题类似,肯定不能每次移动滑动窗口时就从窗口第一个元素开始枚举,这样一定会超时。
考虑到这个题滑动窗口的操作过程,很容易联想到队列,再根据他要返回滑动窗口中的最大值,可以考虑使用优先队列。
对于优先队列,其中的元素默认是从大到小排序,所以我们可以先将数组中前 k 个元素压入优先队列中,记录一次队顶元素(当前滑动窗口的最大值)。之后从数组的第 (k + 1) 个元素开始,每次将一个元素压入队列,此时的滑动窗口超出了其承载量(多了一个元素),于是我们可以对队顶元素进行判断,看他是否在当前滑动窗口中(根据下标 index 是否在滑动窗口中来判断)。考虑到这种做法,我们需要用单独的一个整型变量来记录滑动窗口的下标,并且还要记录每个元素在原数组中的下标 index,对于后者,我们可以用 pair 二元组来实现。具体代码如下
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
int len = nums.size();
// 优先队列默认从大到小排序
// 在pair中存放的是“值-index”的二元组
priority_queue<pair<int, int> > q;
// 先将前k个元素压入优先队列中
for (int i = 0; i < k; ++i) {
q.emplace(nums[i], i);
}
vector<int> ans = {q.top().first}; // 先存放当前队列的最大值
for (int i = k; i < len; i++) {
q.emplace(nums[i], i); // 向队列中添加新元素
// 若当前最大值不在滑动窗口中,则弹出队列
while (q.top().second <= i - k) {
q.pop();
}
ans.push_back(q.top().first); // 向答案中添加当前窗口中的最大值
}
return ans;
}
};