基于Simulink的魔术公式轮胎动力学仿真

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

提示:这里可以添加本文要记录的大概内容:

本篇博文主要用来记录汽车系统动力学课程的学习,仅供课程阶段参考,与实际工程应用还有较大距离。基于Simulink的魔术公式轮胎动力学仿真
本实例主要有以下任务。
1.建立魔术公式轮胎动力学仿真模型。
2.绘制不同载荷下的轮胎纵向力—滑动率关系曲线。
3.绘制不同载荷下的轮胎侧向力—侧偏角关系曲线。
4.绘制不同载荷下的轮胎回正力矩—侧偏角关系曲线。


提示:以下是本篇文章正文内容,下面案例可供参考

一、魔术公式

基于魔术公式的轮胎动力学仿真所需参数见表2-1。
纯工况Pacejka89轮胎模型计算轮胎纵向力、侧向力和回正力矩时共需要43个特性参数,纵向力需要确定11个特性参数;侧向力需要确定14个特性参数;回正力矩需要确定18个回正力矩特性参数。目前应用广泛的参数如表(2-1)所示。
表2-1基于魔术公式的轮胎动力学仿真所需参数
在这里插入图片描述
纯纵滑工况下,Pacejka89轮胎纵向力表达式为:
F x 0 = D x sin ⁡ ( C x arctan ⁡ ( B x s x 0 − E ( B x s x 0 − arctan ⁡ ( B x s x 0 ) ) ) ) + s v x ( 1 ) {F_{x0}} = {D_x}\sin ({C_x}\arctan ({B_x}{s_{x0}} - E({B_x}{s_{x0}} - \arctan ({B_x}{s_{x0}})))) + {s_{vx}}(1) Fx0=Dxsin(Cxarctan(Bxsx0E(Bxsx0arctan(Bxsx0))))+svx(1)

式中, s x 0 = s x + s h x {s_{x0}} = {s_x} + {s_{hx}} sx0=sx+shx 为纵向力组合自变量; s x {s_x} sx为轮胎纵向滑动率,当 s x > 0 {s_x} > 0 sx>0时,为驱动滑转率,当 s x < 0 {s_x} < 0 sx<0为制动滑移率, C x {C_x} Cx为纵向力曲线形状因子,表示纵向力曲线的形状; D x {D_x} Dx为纵向力峰值因子,表示最大纵向力值; B x {B_x} Bx为纵向力曲线刚度因子; B x C x D x {B_x}{C_x}{D_x} BxCxDx为纵向力零点处的纵向刚度; E x {E_x} Ex为纵向力曲率因子,表示曲线峰值附件的形状; s v {s_v} sv为纵向力曲线垂直偏移因子; s h x {s_{hx}} shx为纵向力曲线水平偏移因子。
纵向力参数表达式为:
C x = B 0 D x = B 1 F z 2 + B 2 F z 2 B x = ( B 3 F z 2 + B 4 F z ) e − B 5 F z / ( C x D x ) E x = B 6 F z 2 + B 7 F z + B 8 s v x = 0 s h x = B 9 F z + B 10 ( 2 ) \begin{array}{c} {C_x} = {B_0}\\ {D_x} = {B_1}F_z^2 + {B_2}F_z^2\\ {B_x} = ({B_3}F_z^2 + {B_4}{F_z}){e^{ - {B_5}{F_z}}}/({C_x}{D_x})\\ {E_x} = {B_6}F_z^2 + {B_7}{F_z} + {B_8}\\ {s_{vx}} = 0\\ {s_{hx}} = {B_9}{F_z} + {B_{10}} \end{array}(2) Cx=B0Dx=B1Fz2+B2Fz2Bx=(B3Fz2+B4Fz)eB5Fz/(CxDx)Ex=B6Fz2+B7Fz+B8svx=0shx=B9Fz+B10(2)
纯侧偏工况下,Pacej]a89 轮胎侧向力表达式为:
F y 0 = D y sin ⁡ ( C y arctan ⁡ ( B y s y 0 − E ( B y s y 0 − arctan ⁡ ( B y s y 0 ) ) ) ) + s v y ( 3 ) {F_{y0}} = {D_y}\sin ({C_y}\arctan ({B_y}{s_{y0}} - E({B_y}{s_{y0}} - \arctan ({B_y}{s_{y0}})))) + {s_{vy}}(3) Fy0=Dysin(Cyarctan(Bysy0E(Bysy0arctan(Bysy0))))+svy(3)
式中, α = α + s h y \alpha = \alpha + {s_{h{\rm{y}}}} α=α+shy为侧向力组合自变量: $\alpha $为轮胎侧偏角; C y {C_y} Cy为侧向力曲线形状因子,
表示侧向力曲线的形状; B y {B_y} By为侧向力曲线刚度因子: D y {D_{\rm{y}}} Dy为侧向力峰值因子,表示最大侧向
力值; B y C y D y {B_y}{C_y}{D_y} ByCyDy为侧向力零点处的侧向刚度; E y {E_y} Ey为侧向力曲率因子,表示曲线峰值附近的形
状; s v y {s_{vy}} svy 为侧向力曲线垂直偏移因子; s h y {s_{h{\rm{y}}}} shy为侧向力曲线水平偏移因子。
纵向力参数表达式为:
C y = A 0 D y = A 1 F z 2 + A 2 F z 2 B y = A 3 sin ⁡ ( 2 arctan ⁡ F z / A 4 ) ( 1 − A 5 ∣ γ ∣ ) / ( C y D y ) E y = A 6 F z + A 7 s v y = A 8 γ + A 9 F z + A 10 s h y = A 11 F z γ + A 12 F z + A 13 ( 4 ) \begin{array}{c} {C_y} = {A_0}\\ {D_y} = {A_1}F_z^2 + {A_2}F_z^2\\ {B_y} = {A_3}\sin (2\arctan {F_z}/{A_4})(1 - {A_5}\left| \gamma \right|)/({C_{\rm{y}}}{D_y})\\ {E_y} = {A_6}{F_z} + {A_7}\\ {s_{vy}} = {A_8}\gamma + {A_9}{F_z} + {A_{10}}\\ {s_{hy}} = {A_{11}}{F_z}\gamma + {A_{12}}{F_z} + {A_{13}} \end{array}(4) Cy=A0Dy=A1Fz2+A2Fz2By=A3sin(2arctanFz/A4)(1A5γ)/(CyDy)Ey=A6Fz+A7svy=A8γ+A9Fz+A10shy=A11Fzγ+A12Fz+A13(4)
纯侧偏工况下,Pacejka89 轮胎回正力矩表达式为:
M z 0 = D z sin ⁡ ( C z arctan ⁡ ( B z α z − E z ( B z α z − arctan ⁡ ( B z α z ) ) ) ) + s v z ( 5 ) {M_{z0}} = {D_z}\sin ({C_z}\arctan ({B_z}{\alpha _z} - {E_z}({B_z}{\alpha _z} - \arctan ({B_z}{\alpha _z})))) + {s_{vz}} (5) Mz0=Dzsin(Czarctan(BzαzEz(Bzαzarctan(Bzαz))))+svz(5)
式中, α z = α + s h z {\alpha _{\rm{z}}} = \alpha + {s_{hz}} αz=α+shz为回正力矩组合自变量: C z {C_z} Cz为回正力矩曲线形状因子,表示回正力矩曲线的形状: D z {D_z} Dz 为回正力矩峰值因子,表示最大回正力矩值; B z {B_z} Bz 为回正力矩曲线刚度因子; B z C z D z {B_z}{C_z}{D_z} BzCzDz为回正力矩零点处的扭转刚度; E z {E_z} Ez为回正力矩曲率因子,表示曲线峰值附近的形状; s v z {s_{v{\rm{z}}}} svz为回正力矩曲线垂直偏移因子; s h z {s_{hz}} shz为回正力矩曲线水平偏移因子。
回正力矩参数表达式为:
C z = C 0 D z = C 1 F z 2 + C 2 F z B z = ( C 3 F z 2 + C 4 F z ) ( 1 − C 6 ∣ γ ∣ ) e − C 5 F z / ( C z D z ) E z = ( C 7 F z 2 + C 8 F z + C 9 ) ( 1 − C 6 ∣ γ ∣ ) s v z = C 11 γ + C 12 F z + C 13 s h z = γ ( C 14 F z 2 + C 15 F ) + C 16 F z + C 17 ( 6 ) \begin{array}{c} {C_z} = {C_0}\\ {D_{\rm{z}}} = {C_1}F_z^2 + {C_2}{F_z}\\ {B_z} = ({C_3}F_z^2 + {C_4}{F_z})(1 - {C_6}\left| \gamma \right|){e^{ - {C_5}{F_z}}}/({C_z}{D_z})\\ {E_z} = ({C_7}F_{\rm{z}}^2 + {C_8}{F_z} + {C_9})(1 - {C_6}\left| \gamma \right|)\\ {s_{vz}} = {C_{11}}\gamma + {C_{12}}{F_z} + {C_{13}}\\ {s_{hz}} = \gamma \left( {{C_{14}}F_z^2 + {C_{15}}F} \right) + {C_{16}}{F_z} + {C_{17}} \end{array} (6) Cz=C0Dz=C1Fz2+C2FzBz=(C3Fz2+C4Fz)(1C6γ)eC5Fz/(CzDz)Ez=(C7Fz2+C8Fz+C9)(1C6γ)svz=C11γ+C12Fz+C13shz=γ(C14Fz2+C15F)+C16Fz+C17(6)

二、仿真建模

1.simulink建模

根据上述公式,在simulink中建立模型如图(1)所示。
在这里插入图片描述
图(1)simulink模型
其中,子系统“纵向力参数”对应于公式(2),子系统“纵向力计算”对应公式(1);子系统“侧向力参数”对应于公式(4),子系统“侧向力计算”对应公式(3);子系统“回正力矩参数”对应于公式(6),子系统“回正力矩计算”对应公式(5)。

2.仿真结果

设置仿真时间为10s,滑移率和侧偏角输入模块采用斜坡函数,斜率为2,值域[-10,10]。采用ode45算法求解,将轮胎侧偏角α,轮胎侧向力Fz,轮胎回正力矩Mz等输入到工作空间后,采用附录中的matlab语句绘图,得到侧向力、回正力矩与侧偏角的关系曲线如图(2)(3)(4)所示:
在这里插入图片描述
图(2)轮胎纵向力-滑移率特性
从仿真结果来看,同一垂直载荷情况下,随着轮胎滑移率的增加,轮胎侧向力数值呈现线增大后减小,最后稳定在一定数值的趋势。
在这里插入图片描述
图(3)轮胎侧向力-侧偏角特性
根据仿真结果来看,随着垂直载荷的增加,同一轮胎侧偏角对应的侧向力也随之增加。从图(3)中可得当轮胎侧偏角增加大一定数值后,轮胎侧向力数值几乎不再增加
在这里插入图片描述
图(4)轮胎回正力矩-侧偏角特性
根据仿真结果来看,随着垂直载荷的增加,同一轮胎侧偏角对应的回正力矩也随之增加。
从图(4)中得到,同一垂直载荷的情况下,随着侧偏角的增大,回正力矩数值先增大后减小。

3.模型及绘图文件附录

simulink模型搭建的具体内容在本篇文章附件,可在matlab2015b及以上版本打开并运行,仅供参考。附录为绘图脚本。

legend('载荷3kN','载荷5kN','载荷8kN');
xlabel('轮胎滑移率(%)');
ylabel('轮胎纵向力(N)');
title('轮胎纵向力—滑动率关系曲线');
%%%%%%%%%%%%%%%%%%%%%
figure();plot(s,Fy,'Linewidth',1);
legend('载荷3kN','载荷5kN','载荷8kN');
xlabel('轮胎侧偏角(°)');	ylabel('轮胎侧向力(N)');
title('轮胎侧向力—侧偏角关系曲线');
%%%%%%%%%%%%%%%%%%%
figure();plot(s,Mz,'Linewidth',1);
xlabel('轮胎侧偏角(°)');
ylabel('轮胎回正力矩(N.m)');
title('轮胎回正力矩—侧偏角关系曲线');
legend('载荷3kN','载荷5kN','载荷8kN');
在这里插入代码片
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值