图像质量评价与大模型——Q系列(1)Q-BENCH

《Q-BENCH: A BENCHMARK FOR GENERAL-PURPOSE FOUNDATION MODELS ON LOW-LEVEL VISION》

ICLR2024,arxiv2023.09

通用大模型在其他领域的卓越能力已被证明的情况下,MLLMs对于low-level的视觉感知和理解能力如何呢?本研究首次验证了MLLMs在图像质量评价领域应用的能力,也为后面作者的Q系列奠定了坚实的基础。通过Q-bench,Q-intstruct,再到强大的Q-Align,Haoning Wu循序渐进地构建了图像质量评价领域的MLLM。

0 摘要:

  1. bench通过三个方面评估MLLMs的low-level视觉感知能力:low-level visual perception、low-level visual description 和overall visual quality assessment。对于low-level perception:建立了LLVisionQA数据集,包含2990张不同源的图像,每张图像配备了关注low-level特性的0人工问题。对于low-level description:提出了LLDescribe数据集,包含对于499张图像的long expert-labelled golden low-level text descriptions。对于visual quality:则是和传统给图像质量评价一样的图像人类得分数据集,这里尤为关键的是提出了一个基于soft-max的策略,使得MLLM可以预测出可量化的分数。虽然仅仅是一个简单的softmax,但就是通过这个策略,衍生出来了Q-Align。

1 介绍:

Low-level的视觉能力对图像质量评价尤为重要,因为它与感知视觉的失真(例如模糊和噪声),其他的图像底层特性(例如颜色、亮度、风格等),以及图像的美学特性和情绪等十分相关。作者提出了关于benchmark的一个关键问题:

How do MLLMs emulate human ability related to low-level visual perception and understanding?

答案很简单,是language。

目 录 第一章 引言 1 1.1 图像质量评价的定义 1 1.2 研究对象 1 1.3 方法分类 2 1.4 研究意义 3 第二章 历史发展和研究现状 4 2.1 基于手工特征提取的图像质量评价 4 2.1.1 基于可视误差的“自底向上”模型 4 2.1.1.1 Daly模型 4 2.1.1.2 Watson’s DCT模型 5 2.1.1.3 存在的问题 5 2.1.2 基于HVS的“自顶向下”模型 5 2.1.2.1 结构相似性方法 6 2.1.2.2 信息论方法 8 2.1.2.3 存在的问题 9 2.2 基于深度学习的图像质量评价 10 2.2.1 CNN模型 10 2.2.2 多任务CNN模型 12 2.2.3 研究重点 15 第三章 图像质量评价数据集和性能指标 16 3.1 图像质量评价数据集简介 16 3.2 图像质量评价模型性能指标 17 第四章 总结展望 19 4.1 归纳总结 19 4.2 未来展望 19 参考文献 21 第一章 引言 随着现代科技的发展,诸如智能手机,平板电脑和数码相机之类的消费电子产品快速普及,已经产生了大量的数字图像。作为一种更自然的交流方式,图像中的信息相较于文本更加丰富。信息化时代的到来使图像实现了无障碍传输,图像在现代社会工商业的应用越来越广泛和深入,是人们生活中最基本的信息传播手段,也是机器学习的重要信息源。 图像质量是图像系统的核心价值,此外,它也是图像系统技术水平的最高层次。但是,对图像的有损压缩、采集和传输等过程会很容易导致图像质量下降的问题。例如:在拍摄图像过程中,机械系统的抖动、光学系统的聚焦模糊以及电子系统的热噪声等都会造成图像不够清晰;在图像存储和传输过程中,由于庞大的数据量和有限通讯带宽的矛盾,图像需要进行有损压缩编码,这也会导致振铃效应、模糊效应和块效应等图像退化现象的出现。所以,可以说图像降质在图像系统的各个层面都会很频繁地出现,对图像质量作出相应的客观评价是十分重要且有意义的。为了满足用户在各种应用中对图像质量的要求,也便于开发者们维持、控制和强化图像质量图像质量评价(Image Quality Assessment,IQA)是一种对图像所受到的质量退化进行辨识和量化的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值