《Q-BENCH: A BENCHMARK FOR GENERAL-PURPOSE FOUNDATION MODELS ON LOW-LEVEL VISION》
ICLR2024,arxiv2023.09
通用大模型在其他领域的卓越能力已被证明的情况下,MLLMs对于low-level的视觉感知和理解能力如何呢?本研究首次验证了MLLMs在图像质量评价领域应用的能力,也为后面作者的Q系列奠定了坚实的基础。通过Q-bench,Q-intstruct,再到强大的Q-Align,Haoning Wu循序渐进地构建了图像质量评价领域的MLLM。
0 摘要:
- bench通过三个方面评估MLLMs的low-level视觉感知能力:low-level visual perception、low-level visual description 和overall visual quality assessment。对于low-level perception:建立了LLVisionQA数据集,包含2990张不同源的图像,每张图像配备了关注low-level特性的0人工问题。对于low-level description:提出了LLDescribe数据集,包含对于499张图像的long expert-labelled golden low-level text descriptions。对于visual quality:则是和传统给图像质量评价一样的图像人类得分数据集,这里尤为关键的是提出了一个基于soft-max的策略,使得MLLM可以预测出可量化的分数。虽然仅仅是一个简单的softmax,但就是通过这个策略,衍生出来了Q-Align。
1 介绍:
Low-level的视觉能力对图像质量评价尤为重要,因为它与感知视觉的失真(例如模糊和噪声),其他的图像底层特性(例如颜色、亮度、风格等),以及图像的美学特性和情绪等十分相关。作者提出了关于benchmark的一个关键问题:
How do MLLMs emulate human ability related to low-level visual perception and understanding?
答案很简单,是language。