一、概述
一般对于Request Body不会通过get提交,对于get提交的参数一般称为是查询参数。所以,如果是通过POTS,PUT等方式提交的参数信息,我们一般是放到Request Body来提交到我们的后端。
对于如何接收和校验请求体,FastApi提供的形式是使用:from pydantic import BaseModel
示例如下:
import uvicorn from fastapi import FastAPI from pydantic import BaseModel class Item(BaseModel): name: str description: str = None price: float tax: float = None app = FastAPI() @app.post("/items/") async def create_item(item: Item): return item if __name__ == '__main__': uvicorn.run(app='main:app', host="127.0.0.1", port=8000, reload=True, debug=True)
在上面的模型中,如果提交的Item它必须是怎么样的一个格式,比如name是必选字段,description是可选且默认为None, price是必选,且需要是float类型的,tax是可须且默认为None。
那客户端如何提交上面那些参数呐?
尝试提交参数什么都不写的情况下:
http://127.0.0.1:8000/items/
使用JSON格式提交参数的情况下:
{ "name":"Foo", "description":"An openfdsf", "price":45.4, "tax":3.5 }
故意提交错误参数格式请求:
{ "name":"Foo", "description":"An openfdsf", "price":"45abc", "tax":3.5 }
Request Body 和 Query 和 Path的混合
在设计一些API过程中难免的可能也会需要综合遇到上述的一些混搭的组合,需要同时多个参数的提交和获取
那么我们通常接收这次参数的话一般怎么接收呐?
示例代码如:
import uvicorn from fastapi import FastAPI, Path from pydantic import BaseModel app = FastAPI() class Item(BaseModel): name: str description: str = None price: float tax: float = None @app.put("/items/{item_id}") async def update_item( *, item_id: int = Path(..., title="The ID of the item to get", ge=0, le=1000), q: str = None, item: Item = None, ): results = {"item_id": item_id} if q: results.update({"q": q}) if item: results.update({"item": item}) return results if __name__ == '__main__': uvicorn.run(app='main:app', host="127.0.0.1", port=8000, reload=True, debug=True)
通过之前的学习,其实也很简单道理也还是一样,如上的示例请求的话:
url:
http://127.0.0.1:8000/items/1000?q=xiao
参数:
{ "name":"Foo", "description":"An openfdsf", "price": 45.4, "tax":3.5 }
效果如下:
多个Request Body的提交
更复杂的业务其实会存在多体的Boay的提交,之前做的商城下单里面,客户端有可能就会同时提交多个实体的对象信息到后端,如订单实体,地址实体,商品信息实体等。
那么在Fastapi如何接受多个Body实体呐?通常以前的话,在bottle,通常直接的request.body 或 request.json就可以获取客户端部提交的信息了。
在Fastapi假设客户端提交的参数是这样的形式:
{ "item": { "name": "Foo", "description": "The pretender", "price": 42.0, "tax": 3.2 }, "user": { "username": "dave", "full_name": "Dave Grohl" } }
那如何的接收处理呐?
import uvicorn from fastapi import FastAPI, Path from pydantic import BaseModel app = FastAPI() class Item(BaseModel): name: str description: str = None price: float tax: float = None class User(BaseModel): username: str full_name: str = None @app.put("/items/{item_id}") async def update_item(*, item_id: int, item: Item, user: User): results = {"item_id": item_id, "item": item, "user": user} return results if __name__ == '__main__': uvicorn.run(app='main:app', host="127.0.0.1", port=8000, reload=True, debug=True)
这种情况,其实就是客户端提交多个实体对象。那可以定义多个模型对象即可。fastapi它会自动帮你处理提取信息。
http://127.0.0.1:8000/items/1000
如果另外再假设:
在Fastapi假设客户端提交的参数是这样的形式:
{ "item": { "name": "Foo", "description": "The pretender", "price": 42.0, "tax": 3.2 }, "user": { "username": "dave", "full_name": "Dave Grohl" }, "importance": 5 }
其实这种可能也不是不存在滴,那如何的读取解析importance参数呐?既然参数有Query 和 Path,当然也会有 Body 。
import uvicorn from fastapi import Body, FastAPI from pydantic import BaseModel app = FastAPI() class Item(BaseModel): name: str description: str = None price: float tax: float = None class User(BaseModel): username: str full_name: str = None @app.put("/items/{item_id}") async def update_item( *, item_id: int, item: Item, user: User, importance: int = Body(..., gt=0) ): results = {"item_id": item_id, "item": item, "user": user, "importance": importance} return results if __name__ == '__main__': uvicorn.run(app='main:app', host="127.0.0.1", port=8000, reload=True, debug=True)
上面的代码中我们引入了Body 并且在importance: int = Body(...)进行处理和提取:
如果另外再假设,客户端提交的是一个单体对象内嵌的话,我们需要怎么处理?:
{ "item": { "name": "Foo", "description": "The pretender", "price": 42.0, "tax": 3.2 } }
FastAPI提供了一个:
item: Item = Body(..., embed=True) 具体如下:
import uvicorn from fastapi import Body, FastAPI from pydantic import BaseModel app = FastAPI() class Item(BaseModel): name: str description: str = None price: float tax: float = None @app.put("/items/{item_id}") async def update_item(*, item_id: int, item: Item = Body(..., embed=True)): results = {"item_id": item_id, "item": item} return results if __name__ == '__main__': uvicorn.run(app='main:app', host="127.0.0.1", port=8000, reload=True, debug=True)
请求示例如:
如果另外再假设,客户端提交一个更复杂的嵌套模型的话,怎么办?麻蛋的 肯定也是会有这样的情况滴! 嵌套里面有列表有实体。比如:
{ "name": "Foo", "description": "The pretender", "price": 42.0, "tax": 3.2, "tags": ["rock", "metal", "bar"], "image": { "url": "http://example.com/baz.jpg", "name": "The Foo live" } }
这时候,我们就需要所谓的子内嵌啦:
import uvicorn from typing import Set from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class Image(BaseModel): url: str name: str class Item(BaseModel): name: str description: str = None price: float tax: float = None tags: Set[str] = [] image: Image = None @app.put("/items/{item_id}") async def update_item(*, item_id: int, item: Item): results = {"item_id": item_id, "item": item} return results if __name__ == '__main__': uvicorn.run(app='main:app', host="127.0.0.1", port=8000, reload=True, debug=True)
如上代码,Item里面包含了Image,也包含了,tags类型的列表定义。
MMP更深层的嵌套也是可以定义的如:
{ "name":"Foo", "description":"The pretender", "price":42, "items":[ { "name":"Foo", "description":"The pretender", "price":42, "tax":3.2, "tags":[ "rock", "metal", "bar" ], "image":{ "url":"http://example.com/baz.jpg", "name":"The Foo live" } }, { "name":"Foo2", "description":"The 2", "price":422, "tax":3.2, "tags":[ "rock", "metal", "bar" ], "image":{ "url":"http://example.com/baz.jpg", "name":"The Foo live" } } ] }
对应的解析为:
import uvicorn from fastapi import FastAPI from pydantic import BaseModel from typing import List, Set app = FastAPI() class Image(BaseModel): url: str name: str class Item(BaseModel): name: str description: str = None price: float tax: float = None tags: Set[str] = [] # images: List[Image] = None image: Image = None class Offer(BaseModel): name: str description: str = None price: float items: List[Item] @app.post("/offers/") async def create_offer(*, offer: Offer): return offer if __name__ == '__main__': uvicorn.run(app='main:app', host="127.0.0.1", port=8000, reload=True, debug=True)
请求url
http://127.0.0.1:8000/offers
Request Body的Field
Field字段的意思其实就是类似上面Query, Path,也同样给Body内的字段的信息添加相关的校验。
也就是说。通过Field来规范提交的Body参数信息。比如:
import uvicorn from fastapi import Body, FastAPI from pydantic import BaseModel, Field app = FastAPI() class Item(BaseModel): name: str description: str = Field(None, title="标题啊", description="错误提示文字啊", max_length=30) price: float = Field(..., gt=0, description="错误提示文字啊") tax: float = None @app.put("/items/{item_id}") async def update_item(*, item_id: int, item: Item = Body(..., embed=True)): results = {"item_id": item_id, "item": item} return results if __name__ == '__main__': uvicorn.run(app='main:app', host="127.0.0.1", port=8000, reload=True, debug=True)
上面的意思就是和之前定义参数校验其实一样
正常情况:
{ "item":{ "name": "Foo", "description": "The pretender", "price": 42.0, "tax": 3.2 } }
异常情况:
{ "item":{ "name": "Foo", "description": "The pretender sssssssssssssssss", "price": 42.0, "tax": 3.2 } }
其他数据类型的校验
对于数据格式的校验,通常,我们不止于
-
int
-
float
-
str
-
bool
但是提交参数不止于上述的几种格式,有时候比如是对手机号码的校验,有些时候是时间类型的校验等
其他类型:
其他数据类型¶ 以下是您可以使用的一些其他数据类型(来自官方文档):
-
UUID:
-
一个标准的“通用唯一标识符”,在许多数据库和系统中常见于ID。
-
在请求和答复中,将表示为str.
-
-
datetime.datetime:
-
一只Pythondatetime.datetime.
-
在请求和答复中,将表示为str采用ISO 8601格式,如:2008-09-15T15:53:00+05:00.
-
-
datetime.date:
-
Pythondatetime.date.
-
在请求和答复中,将表示为str采用ISO 8601格式,如:2008-09-15.
-
-
datetime.time:
-
一只Pythondatetime.time.
-
在请求和答复中,将表示为str采用ISO 8601格式,如:14:23:55.003.
-
-
datetime.timedelta:
-
一只Pythondatetime.timedelta.
-
在请求和答复中,将表示为float总秒数。
-
Pydantic还允许将其表示为“ISO 8601时间差异编码”,有关更多信息,请参阅文档。.
-
-
frozenset:
-
在请求和答复中,将其视为set:
-
在请求中,将读取列表,消除重复,并将其转换为set.
-
在答复中,set将转换为list.
-
生成的架构将指定set值是唯一的(使用JSONSchema的uniqueItems).
-
-
bytes:
-
标准Pythonbytes.
-
在请求和答复中将被视为str.
-
生成的架构将指定它是str带着binary“格式”。
-
-
Decimal:
-
标准PythonDecimal.
-
在请求和响应中,处理方式与float.
-
所以我还可以使用其他类型来校验:
import uvicorn from datetime import datetime, time, timedelta from uuid import UUID from fastapi import Body, FastAPI app = FastAPI() @app.put("/items/{item_id}") async def read_items( item_id: UUID, start_datetime: datetime = Body(None), end_datetime: datetime = Body(None), repeat_at: time = Body(None), process_after: timedelta = Body(None), ): start_process = start_datetime + process_after duration = end_datetime - start_process return { "item_id": item_id, "start_datetime": start_datetime, "end_datetime": end_datetime, "repeat_at": repeat_at, "process_after": process_after, "start_process": start_process, "duration": duration, } if __name__ == '__main__': uvicorn.run(app='main:app', host="127.0.0.1", port=8000, reload=True, debug=True)
本文参考链接:
http://www.zyiz.net/tech/detail-119883.html