一、背景
对于一些复杂的函数,通常会找简单的函数做近似,而多项式函数就是常用的一种简单函数。
比如当 ∣ x ∣ |x| ∣x∣ 很小时,有以下近似:
e x ≈ x + 1 e^x\approx x+1 ex≈x+1 l n ( x + 1 ) ≈ x ln(x+1)\approx x ln(x+1)≈x这两个复杂函数都用了一次多项式来近似,显然有:
e x ∣ x = 0 = ( x + 1 ) ∣ x = 0 ( e x ) ′ ∣ x = 0 = ( x + 1 ) ′ ∣ x = 0 e^x|_{x=0}=(x+1)|_{x=0} \ \ \ \ \ \ \ \ (e^x)'|_{x=0}=(x+1)'|_{x=0} ex∣x=0=(x+1)∣x=0 (ex)′∣x=0=(x+1)′∣x=0 l n ( x + 1 ) ∣ x = 0 = x ∣ x = 0 [ l n ( x + 1 ) ] ′ ∣ x = 0 = ( x ) ′ ∣ x = 0 ln(x+1)|_{x=0}=x|_{x=0} \ \ \ \ \ \ \ \ [ln(x+1)]'|_{x=0}=(x)'|_{x=0} ln(x+1)∣x=0=x∣x=0 [ln(x+1)]′∣x=0=(x)′∣x=0但这些近似精确性不高,所产生的误差是关于 x x x的高阶无穷小。因此为了更加精确,可以用更高阶的多项式来表示。
二、提出问题
设 f ( x ) f(x) f(x) 在 x 0 x_0 x0 有 n n n 阶导数,
试找出一个关于 ( x − x 0 ) (x-x_0) (x−x0) 的 n n n 次多项式 P n P_n Pn 来近似表达 f ( x ) f(x) f(x)。
P n ( x ) = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + … … + a n ( x − x 0 ) n P_n(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+……+a_n(x-x_0)^n Pn(x)=a0+a1(x−x0)+a2(x−x0)2+……+an(x−x0)n要求:使 P n − f ( x ) P_n-f(x) Pn−f(x) 为 x → x 0 x \rightarrow x_0 x→x0 时的比 ( x − x 0 ) n (x-x_0)^n (x−x0)n 高阶的无穷小。
三、解决问题
设有以下等式成立:
P n ( x 0 ) = f ( x 0 ) P_n(x_0)=f(x_0) Pn(x0)=f(x0) P n ′ ( x 0 ) = f ′ ( x 0 ) P_n'(x_0)=f'(x_0) Pn′(x0)=f′(x0) P n ′ ′ ( x 0 ) = f ′ ′ ( x 0 ) P_n''(x_0)=f''(x_0) Pn′′(x0)=f′′(x0) … … …… …… P n ( n ) ( x 0 ) = f ( n ) ( x 0 ) P_n^{\left( n \right)}(x_0)=f^{(n)}(x_0) Pn(n)