泰勒公式及泰勒级数

泰勒公式用于用多项式近似复杂函数,通过求导数得到的系数构建n次多项式Pn,使得Pn-f(x)在x接近x0时为高阶无穷小。泰勒中值定理确保了这种近似的有效性。泰勒级数是当函数在某点任意阶可导时的幂级数展开,而函数能否展开为泰勒级数还需满足一定条件。文章还介绍了函数的幂级数展开和一些常用的泰勒展开式。
摘要由CSDN通过智能技术生成

一、背景

对于一些复杂的函数,通常会找简单的函数做近似,而多项式函数就是常用的一种简单函数。

比如当 ∣ x ∣ |x| x 很小时,有以下近似:
e x ≈ x + 1 e^x\approx x+1 exx+1 l n ( x + 1 ) ≈ x ln(x+1)\approx x ln(x+1)x这两个复杂函数都用了一次多项式来近似,显然有:
e x ∣ x = 0 = ( x + 1 ) ∣ x = 0          ( e x ) ′ ∣ x = 0 = ( x + 1 ) ′ ∣ x = 0 e^x|_{x=0}=(x+1)|_{x=0} \ \ \ \ \ \ \ \ (e^x)'|_{x=0}=(x+1)'|_{x=0} exx=0=(x+1)x=0        (ex)x=0=(x+1)x=0 l n ( x + 1 ) ∣ x = 0 = x ∣ x = 0          [ l n ( x + 1 ) ] ′ ∣ x = 0 = ( x ) ′ ∣ x = 0 ln(x+1)|_{x=0}=x|_{x=0} \ \ \ \ \ \ \ \ [ln(x+1)]'|_{x=0}=(x)'|_{x=0} ln(x+1)x=0=xx=0        [ln(x+1)]x=0=(x)x=0但这些近似精确性不高,所产生的误差是关于 x x x的高阶无穷小。因此为了更加精确,可以用更高阶的多项式来表示。

二、提出问题

f ( x ) f(x) f(x) x 0 x_0 x0 n n n 阶导数,

试找出一个关于 ( x − x 0 ) (x-x_0) (xx0) n n n 次多项式 P n P_n Pn 来近似表达 f ( x ) f(x) f(x)
P n ( x ) = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + … … + a n ( x − x 0 ) n P_n(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+……+a_n(x-x_0)^n Pn(x)=a0+a1(xx0)+a2(xx0)2++an(xx0)n要求:使 P n − f ( x ) P_n-f(x) Pnf(x) x → x 0 x \rightarrow x_0 xx0 时的比 ( x − x 0 ) n (x-x_0)^n (xx0)n 高阶的无穷小。

三、解决问题

设有以下等式成立:
P n ( x 0 ) = f ( x 0 ) P_n(x_0)=f(x_0) Pn(x0)=f(x0) P n ′ ( x 0 ) = f ′ ( x 0 ) P_n'(x_0)=f'(x_0) Pn(x0)=f(x0) P n ′ ′ ( x 0 ) = f ′ ′ ( x 0 ) P_n''(x_0)=f''(x_0) Pn(x0)=f(x0) … … …… P n ( n ) ( x 0 ) = f ( n ) ( x 0 ) P_n^{\left( n \right)}(x_0)=f^{(n)}(x_0) Pn(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸葛思颖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值