量子计算基础数学

本文介绍了量子计算的基础数学知识,包括向量表示与运算、线性算子和矩阵、特征值与特征向量,以及张量积和迹的概念。通过狄拉克符号和量子比特的解释,阐述了量子计算中的数学原理,如线性算子的性质、厄米算子、投影算子和酉算子。此外,还讲解了谱分解及其应用,以及张量积的定义和操作规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

本文根据“本源溯知”平台 > 量子课堂 > 基本概念 > 5.本源量子基础数学 教学视频进行知识整理,观看视频请点击:本源量子基础数学


一、向量表示和向量运算

线性代数的基本对象是向量,而量子计算的基本单位是量子比特,量子比特用向量来描述。

注:两能级系统和量子比特
经典计算机:用逻辑电路中的高低电平表示 0、1
量子计算机:用粒子所处的两种能级基态 ∣ g > \left| g \right> g激发态 ∣ e > \left| e \right> e 构成基本计算单元,用向量的方式表示为:

∣ g > = [ 0 1 ] , ∣ e > = [ 1 0 ] \left| g \right> =\left[ \begin{array}{c} 0\\ 1\\ \end{array} \right] ,\left| e \right> =\left[ \begin{array}{c} 1\\ 0\\ \end{array} \right] g=[01],e=[10]
和经典的比特类比,常将 ∣ g > \left| g \right> g 记做 ∣ 1 > \left| 1 \right> 1,将 ∣ e > \left| e \right> e 记做 ∣ 0 > \left| 0 \right> 0,并称之为量子比特(quantum bits)。

向量的表示

[ z 1 ⋮ z n ] \left[ \begin{array}{c} z_1\\ \vdots\\ z_n\\ \end{array} \right] z1zn

向量的运算

  • 加法: [ z 1 ⋮ z n ] + [ z 1 ′ ⋮ z n ′ ] = [ z 1 + z 1 ′ ⋮ z n + z n ′ ] \left[ \begin{array}{c} z_1\\ \vdots\\ z_n\\ \end{array} \right] +\left[ \begin{array}{c} z_{1}^{'}\\ \vdots\\ z_{n}^{'}\\ \end{array} \right] =\left[ \begin{array}{c} z_1+z_{1}^{'}\\ \vdots\\ z_n+z_{n}^{'}\\ \end{array} \right] z1zn+z1zn=z1+z1zn+zn

  • 标量乘: z [ z 1 ⋮ z n ] = [ z z 1 ⋮ z z n ] z\left[ \begin{array}{c} z_1\\ \vdots\\ z_n\\ \end{array} \right] =\left[ \begin{array}{c} zz_1\\ \vdots\\ zz_n\\ \end{array} \right] zz1zn=zz1zzn

  • 新的符号:狄拉克(Dirac)符号 ∣ ψ > \left| \psi \right> ψ,这是量子力学和量子计算中最基础的符号,这个符号等价于向量。

在量子理论中,描述量子态的向量称为态矢,态矢分为左矢和右矢。
右失( k e t ): ∣ ψ > = [ c 1 c 2 ⋯ c n ] T = [ c 1 c 2 ⋮ c n ] 左失( b r a ): < ψ ∣ = [ c 1 ∗ c 2 ∗ ⋯ c n ∗ ] \text{右失(}ket\text{):}\left| \psi \right> =\left[ \begin{matrix} c_1& c_2& \cdots& c_n\\ \end{matrix} \right] ^{\mathrm{T}}=\left[ \begin{array}{c} c_1\\ c_2\\ \vdots\\ c_n\\ \end{array} \right] \\ \text{左失(}bra\text{):}\left< \psi \right|=\left[ \begin{matrix} c_{1}^{*}& c_{2}^{*}& \cdots& c_{n}^{*}\\ \end{matrix} \right] 右失(ket):ψ=[c1c2cn]T=c1c2cn左失(bra):ψ=[c1c2cn]
在讨论同一个问题时,如果左矢和右矢在括号内的描述相同的话,那么这两个矢量互为转置共轭。

  • 基:

对于一组向量 ∣ u 1 > , ⋯   , ∣ u n > \left| u_1 \right> ,\cdots ,\left| u_n \right> u1,,un

<think>好的,我现在要帮用户了解量子计算基础知识。首先,用户明确提到了“量子计算入门 基础概念 教程”,所以需要从最基础的部分开始,比如量子比特、叠加态、纠缠这些核心概念。我需要参考提供的引用资料,特别是引用[1]和[2],里面提到了量子比特的数学表示和叠加态,这些是关键点。 接下来,我得考虑如何组织内容。用户可能需要一个结构清晰的回答,分点讲解。比如先讲量子比特,然后是叠加态和纠缠,再介绍量子门和算法。同时,用户还希望有相关的数学公式,按照系统级指令,行内公式用$...$,独立公式用$$...$$,并且确保LaTeX正确。 然后,我需要检查引用是否正确。例如,引用[1]提到量子比特,引用[2]有数学表示,引用[3]提到量子图灵机和量子门,引用[4]是推荐书籍。这些都要在适当的地方标注引用标识,比如在解释量子门时引用[3],在推荐资料时引用[4]。 另外,用户要求生成相关问题,我需要根据内容设计几个相关问题,比如量子比特和经典比特的区别,量子纠缠的应用,或者常见的量子算法有哪些。这些问题要帮助用户进一步学习,同时覆盖回答中的关键点。 还要注意使用中文,保持语言简洁明了,避免专业术语过多,但又要准确。比如解释叠加态时,用简单的例子说明量子比特可以同时处于多个状态,而不仅仅是0或1。数学公式部分要正确,比如量子比特的表示用$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$,并解释α和β的意义。 可能还需要提到量子计算的优势,比如在密码学、优化问题中的应用,结合引用[1]中的内容。同时,量子门如Hadamard门、CNOT门的具体作用,以及它们如何改变量子态,这部分需要引用[3]的信息。 最后,确保回答结构清晰,每个部分有小标题,代码示例(如果有的话)用正确的格式,但根据用户问题,可能不需要代码,而是数学公式和文字解释。生成的问题要覆盖各个基础概念,帮助用户自测或深入学习。</think>### 量子计算入门基础概念详解 #### 1. 量子比特(Qubit) 量子比特是量子计算的基本单元,与经典比特的二进制状态(0/1)不同,量子比特可以处于叠加态。其数学表示为: $$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$ 其中$\alpha, \beta$为复数且满足$|\alpha|^2 + |\beta|^2 = 1$,表示测量时坍缩到$|0\rangle$或$|1\rangle$的概率[^2]。 #### 2. 叠加态与量子纠缠 - **叠加态**:量子比特可同时处于多个状态的线性组合,例如$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$表示等概率测量到0或1。 - **量子纠缠**:两个量子比特形成纠缠态(如$|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$),其状态无法单独描述,即使空间分离仍保持关联性[^1]。 #### 3. 量子门与量子电路 量子门是对量子比特进行操作的基本单元: - **Pauli-X门**:实现比特翻转$X|0\rangle = |1\rangle$ - **Hadamard门**:产生叠加态$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ - **CNOT门**:两比特受控非门,构成量子纠缠的核心操作[^3] #### 4. 量子算法优势 量子计算通过量子并行性实现加速,典型应用包括: - Shor算法(快速质因数分解) - Grover算法(非结构化搜索加速) - 量子化学模拟(精确计算分子性质) #### 5. 学习路径建议 1. 掌握线性代数与量子力学基础 2. 通过Qiskit等框架实践量子电路编程 3. 研究《Quantum Computation and Quantum Information》经典教材[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸葛思颖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值