目录
第一章 引言
自动驾驶技术的发展带来了自动驾驶车辆的出现,而路径规划作为自动驾驶车辆的关键功能之一,对于确定最佳行驶路径至关重要。在本文中,我们将展示基于贝叶斯算法的机器学习在自动驾驶路径规划中的应用实例。我们将从数据准备、贝叶斯路径规划模型训练、路径规划预测以及实验结果分析等方面进行详细讨论,并将Python实现嵌入到具体章节中。
第二章 数据准备
在这一部分,我们将介绍如何模拟路径规划数据,并准备训练数据集。我们将使用Python来模拟数据并进行数据处理,以便为后续的贝叶斯路径规划模型训练做准备。
pythony code
import numpy as np
# 模拟路径规划数据
# 假设有10个样本数据,每个样本包括当前位置、目标位置和环境信息
# 环境信息包括路况、交通信号等
# 模拟当前位置和目标位置
current_positions = np.random.rand(10, 2) * 100 # 当前位置随机分布在100x100的区域内
target_positions = np.random.rand(10, 2) * 100 # 目标位置随机分布在