矩阵的逆的求法


逆的求法很多,下面是几种比较常见的。

强行解线性方程法

把逆矩阵的定义写出来
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n ] [ x 11 x 12 ⋯ x 1 n x 21 x 22 ⋯ x 2 n ⋯ ⋯ ⋯ ⋯ x n 1 x n 2 ⋯ x n n ] = [ 1 0 ⋯ 0 0 1 ⋯ 0 ⋯ ⋯ ⋯ ⋯ 0 0 ⋯ 1 ] \left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right]\left[\begin{array}{cccc} x_{11} & x_{12} & \cdots & x_{1 n} \\ x_{21} & x_{22} & \cdots & x_{2 n} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n 1} & x_{n 2} & \cdots & x_{n n} \end{array}\right]=\left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \end{array}\right] a11a21an1a12a22an2a1na2nannx11x21xn1x12x22xn2x1nx2nxnn=100010001
这实际上是n个系数矩阵相同(都是A)的n元方程组。LU分解显出了他的好处:它可以复用。
A = L ∗ U A=L*U A=LU
对于每一列k L U A − 1 ( k ) = e ( k ) L U A^{-1(k)}=e^{(k)} LUA1(k)=e(k)构成一个系数矩阵为A的n元线性方程,并把A矩阵LU分解了。知道L和U后解出每个方程的复杂度是 O ( n 2 ) O(n^2) O(n2)的,共有n个方程,再加上 O ( n 3 ) O(n^3) O(n3)的LU分解复杂度,总复杂度是 O ( n 2 ) n + O ( n 3 ) = O ( n 3 ) O(n^2)n+O(n^3)=O(n^3) O(n2)n+O(n3)=O(n3)

初等变换法

这种方法是线性代数课最常用的方法,就是把E加到A右边成增广矩阵,然后行列分别高斯消元,左半部分的A变成单位矩阵后,右边变成的样子就是逆。

伴随矩阵法

逆矩阵可以写成:
A − 1 = A ∗ ∣ A ∣ \Large A^{-1}=\frac{A^{*}}{|A|} A1=AA
其中 A ∗ = [ M 11 ⋯ M 1 n ⋮ ⋱ ⋮ M n 1 ⋯ M n n ] A^{*}=\left[\begin{array}{ccc} M_{11} & \cdots & M_{1 n} \\ \vdots & \ddots & \vdots \\ M_{n 1} & \cdots & M_{n n} \end{array}\right] A=M11Mn1M1nMnn
其中Mij为A[i,j]的代数余子式。
显然一共 n 2 n^2 n2个代数余子式,每个余子式是个系数乘上n-1阶行列式,求行列式最好的复杂度 O ( n 3 ) O(n^3) O(n3),所以最后复杂度 O ( n 5 ) O(n^5) O(n5)
行列式的求法参见我的另一篇博客:

https://blog.csdn.net/sidnee/article/details/105772605

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值