卷积的理解

对于卷积这个概念,最早记得还是大一时候在同济版本的高等数学那本书里面遇到的,记得卷积出现的地方就是求积分的那章节好像。当时是看的一脸懵逼,这公式怎么长这个样子,它为什么要这么算,卷积究竟用在哪儿?卷积产生的背景是什么呢?

只怪当时只是被卷积的搞不懂的计算方式给吓蒙了,也只是会用积分算卷积,考试也就这要求嘛。。。悲哀一分钟先

上面那么多疑问还是到现在大四了,在自学数字图像处理时候又遇到了。在多次遇到卷积这个概念,并且翻看多处资料,还是那种似懂非懂的感觉。今天又一次思考了一下,刷了波知乎,收获不小。

我只是大自然的搬运工

我没有学过信号处理,所以一开始是先补习了一部分信号与系统的知识,比如线性时不变系统,单位脉冲,系统输入,系统输出等基本概念。信号处理很快就会涉及卷积计算,在这我想说,非科班的可以用现实中的例子更好理解卷积,鲜活的例子更容易理解卷积的物理意义,当然数学的严谨推倒与演算是对理解的进一步加深强化。

首先在这儿推荐科学网唐常杰老师的一片文章辐射、服碘、补盐、空袭和卷积—–教学难点讨论之一,看完真的是有种茅塞顿开的感觉,现实中看似简单的事件,一旦深究某个缘由背后的真理,必然付出极大努力。说人话就是卷积原来可以这么玩。

唐老师给出的打点滴就可以很好的理解卷积

打点滴时药水每次滴下的药量和每次滴下的时间间隔基本一致,可以将之理解为离散的过程。想要计算某病人从开始打点滴(时间为t时刻)到现在(时间为u时刻)体内含有的药物浓度这就要用到卷积的知识了。因为药物在人体内的含量是一个衰减的过程,点滴滴入血液越早,到现在那一滴在人体内的药物含量就越低。我们想要计算从开始打点滴到现在所有点滴在人体内的残留量是一个求和的过程。求和是计算从开始到现在(t->u)每一滴点滴衰减后的药物残留量之和。假设,在t时的那滴药液含药量f(t),当时间流逝到u时刻,假设那一滴药物在体内的残量是f(t) g(u-t),其中g(u-t)称为衰减因子函数。从开始到现在人体内的药物含量为g(u)

g(u)=t=0uf(t)g(ut)

可以看出上面的表达式是离散化的求和,卷积是做的积分计算,一个是离散求和一个是连续求和,本质是一样的。

还有知乎上用复利计算来描述卷积的过程。

作者:果程C
链接:https://www.zhihu.com/question/22298352/answer/50940942
来源:知乎
这里写图片描述
这里写图片描述

作者:Nirvana AC
链接:https://www.zhihu.com/question/22298352/answer/43685716
来源:知乎

化工厂污染例子

我先后一共在四个场景下遇到过卷积:1. 微分方程,2. 傅立叶变换及其应用,3. 概率论,4. 卷积神经网。在不同场景的应用前面的人已经答的很好了,我先不展开了,讲一下我印象最深刻的一个简单理解,是微分方程公开课上prof举的一个栗子,和上面打人的栗子其实差不多,不过这个更现实,故事细节有点模糊,记不清的地方只能凭脑补了。。大概就是他的女儿是做环保的,有一次她接到一个项目,评估一个地区工厂化学药剂的污染(工厂会排放化学物质,化学物质又会挥发散去),然后建模狮告诉她药剂的残余量是个卷积。她不懂就去问她爸爸,prof就给她解释了。假设t时刻工厂化学药剂的排放量是f(t) mg,被排放的药物在排放后Δt时刻的残留比率是g(Δt) mg/mg;那么在u时刻,对于t时刻排放出来的药物,它们对应的Δt=u-t,于是u时刻化学药剂的总残余量就是∫f(t)g(u-t)dt,这就是卷积了。

前面几个例子都是把卷积的一个函数看做衰减因子看待,下面这位知乎大神从反褶角度解释了一下,其实本质是一样的。

作者:林麦
链接:https://www.zhihu.com/question/22298352/answer/24525594
来源:知乎

这里写图片描述
这里写图片描述

最后在看一个在豆瓣上看到的很有趣的讲解卷积的例子,笑喷,hhh

比如说你的老板命令你干活,你却到楼下打台球去了,后来被老板发现,他非常气愤,扇了你一巴掌(注意,这就是输入信号,脉冲),于是你的脸上会渐渐地(贱贱地)鼓起来一个包,你的脸就是一个系统,而鼓起来的包就是你的脸对巴掌的响应,好,这样就和信号系统建立起来意义对应的联系。下面还需要一些假设来保证论证的严谨:假定你的脸是线性时不变系统,也就是说,无论什么时候老板打你一巴掌,打在你脸的同一位置(这似乎要求你的脸足够光滑,如果你说你长了很多青春痘,甚至整个脸皮处处连续处处不可导,那难度太大了,我就无话可说了哈哈),你的脸上总是会在相同的时间间隔内鼓起来一个相同高度的包来,并且假定以鼓起来的包的大小作为系统输出。好了,那么,下面可以进入核心内容——卷积了!

如果你每天都到地下去打台球,那么老板每天都要扇你一巴掌,不过当老板打你一巴掌后,你5分钟就消肿了,所以时间长了,你甚至就适应这种生活了……如果有一天,老板忍无可忍,以0.5秒的间隔开始不间断的扇你的过程,这样问题就来了,第一次扇你鼓起来的包还没消肿,第二个巴掌就来了,你脸上的包就可能鼓起来两倍高,老板不断扇你,脉冲不断作用在你脸上,效果不断叠加了,这样这些效果就可以求和了,结果就是你脸上的包的高度随时间变化的一个函数了(注意理解);如果老板再狠一点,频率越来越高,以至于你都辨别不清时间间隔了,那么,求和就变成积分了。可以这样理解,在这个过程中的某一固定的时刻,你的脸上的包的鼓起程度和什么有关呢?和之前每次打你都有关!但是各次的贡献是不一样的,越早打的巴掌,贡献越小,所以这就是说,某一时刻的输出是之前很多次输入乘以各自的衰减系数之后的叠加而形成某一点的输出,然后再把不同时刻的输出点放在一起,形成一个函数,这就是卷积,卷积之后的函数就是你脸上的包的大小随时间变化的函数。本来你的包几分钟就可以消肿,可是如果连续打,几个小时也消不了肿了,这难道不是一种平滑过程么?反映到剑桥大学的公式上,f(a)就是第a个巴掌,g(x-a)就是第a个巴掌在x时刻的作用程度,乘起来再叠加就ok了。

最后总结:听导师说,写论文就和讲故事一样,要讲得生动而不失深度,需要作者投入极大的精力来打磨。

今日一语:思考存在的意义

阅读更多

没有更多推荐了,返回首页