CS229课程笔记13:Factor Analysis简介

Ng将FA作为EM算法隐变量是连续变量的例子进行介绍,讲了很多公式推导的过程;笔者仅介绍其原理以及构造。


若我们假设数据是高斯分布 N(μ,Σ) ,利用最大似然法(maximum likelihood)得到的估计值为

μ^=1mi=1mxiΣ^=1mi=1m(xiμ^)(xiμ^)T

其中 xiRn m 为样本数量。

m<<n或者 mn 时, Σ^ 大概率是奇异的,即行列式为0且不存在逆元。若直接进行估计得到的估计值无法用于求取 x 的概率分布。根本原因是模型复杂度过高,样本数过少。解决方式可以是加强假设,降低模型复杂度。例如我们可以加入Σ是对角阵的假设,利用最大似然法可以很容易求得

μ^j=1mi=1mxijσ^j=1mi=1m(xijμ^j)2

其中 j=1n 。更强的假设是 Σ=σ2I ,当然也可以通过最大似然法求解。

上诉两个假设直接假设了所有predictor之间是无关的,这通常不符合实际情况,所以上诉两个假设实际使用并不广泛,效果不佳。Factor Analysis (FA)的假设相对较弱,相对前两种模型效果有所提升;但仍然依赖于高斯分布的假设,并不流行。目前最常用的成分分析的方法有ICA以及其各种变形。

Factor Analysis的假设

假设变量 x 是隐变量z的近似线性组合 x=μ+Λz+ϵ ,其中 μRn x 的偏移量,ϵRn用于拟合线性组合之外的偏差, zRd 是位于低维空间空间中的隐变量( d<n dn ), Λn×d z x的线性变换。

上诉是成分分析中常见的线性假设,Factor Analysis进一步假设 zN(0,I) ,以及 ϵN(0,Ψ) ,这也是FA基于高斯分布假设的由来。

Ng之后就开始分析高斯分布的性质,然后利用EM算法对FA进行求解。这里仅稍微讨论一下上诉假设的一些小推论。

xN(μ,ΛΛT+Ψ)x|zN(μ+Λz,Ψ)

值得注意的是FA的假设使得FA的 Λ 有无穷解,因为 zN(0,I) 各维对称,所以可以任意变换该低维空间的基而不影响结果。具体地,任意orthonormal的方阵 R 满足RTR=I,有 x=μ+ΛRTRz+ϵ ;令 Λ=ΛRT z=Rz ,则有 E(z)=0 Var(z)=E(zzT)=E(RRT)=I (因为 R 是方阵,基于逆元的性质),从而x=μ+Λz+ϵ,且 zN(0,I)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值