控制系统建模与传递函数模型解析
1. 机械平移系统建模
在机械平移系统中,我们可以通过建立微分方程来描述系统的动态特性,然后通过拉普拉斯变换将其转换为传递函数模型。以一个典型的机械平移系统为例,其运动方程如下:
[M_1\frac{d^2x_1}{dt^2} + B_1\frac{dx_1}{dt} + B_2\frac{d}{dt}(x_1 - x_2) = f(t)]
对等式两边进行拉普拉斯变换,得到:
[[M_1s^2 + (B_1 + B_2)s]X_1(s) - B_2sX_2(s) = F(s)\quad(1.38)]
另一个方程为:
[M_2\frac{d^2x_2}{dt^2} + B_2\frac{d}{dt}(x_2 - x_1) + Kx_2 = 0]
同样进行拉普拉斯变换:
[[M_2s^2 + B_2s + K]X_2(s) = B_2sX_1(s)]
进一步得到:
[X_1(s) = \frac{(M_2s^2 + B_2s + K)}{B_2s}X_2(s)\quad(1.39)]
将式(1.39)代入式(1.38),可得到:
[F(s) = \left[\frac{[M_1s^2 + (B_1 + B_2)s][M_2s^2 + B_2s + K]}{B_2s} - B_2s\right]X_2(s)]
最终得到传递函数:
[\frac{X_2}{F(s)} = \frac{B_2}{[M_1M_2s^3 + {M_1B_2 + M_2(B_1 + B_2)}s^2 + (M_1K + B_1B_2)s + K(B_1 + B_2)]}]