自动控制理论(3)——控制系统的数学模型(系统框图和信号流图)

系列文章目录

自动控制理论(1)——自动控制理论概述
自动控制理论(2)——控制系统的数学模型(微分方程、传递函数)



一、控制系统框图

1.定义

由具有一定函数关系的环节组成的,且标有信号流向的图

2.组成

1)信号线
2)分支点:表示信号引出或测量的位置
3)相加点:表示对两个以上的信号进行代数运算
4)方框(环节):表示对信号进行数学变换
在这里插入图片描述

3.方框图的等效变换

原则:1)前向通路传递函数乘积保持不变 2)回路中传递函数乘积保持不变

1.串联

### 方框图表示法概述 方框图是一种图形化工具,用于描述控制系统中的各个组件及其相互关系。通过这种图表形式可以清晰展示信号流路径以及各部分之间的交互方式[^1]。 #### 基本元素构成 - **输入节点(Input Node)**:代表外部施加于系统的激励量; - **输出节点(Output Node)**:指示由系统产生的响应变量; - **比较点(Summing Point)**:实现两个或多个信号间的代数运算操作; - **分支点(Branching Point)**:同一信号分发至不同目的地; - **传递函数(Transfer Function Block)**:体现元件特性,通常以拉普拉斯变换表达式呈现; 对于直流电机这样的物理对象,在Simulink环境中构建状态空间模型时会涉及到上述基本单元的应用实例: ```matlab % 创建一个简单的DC电机的状态空间模型并绘制其方框图 A = [-R/L, -Km/L; Km/J, -B/J]; % 系统矩阵 A B = [1/L; 0]; % 输入矩阵 B C = [0, 1]; % 输出矩阵 C D = 0; % 直接传输项 D sys_dc_motor = ss(A,B,C,D); % 构建状态空间模型 figure; bode(sys_dc_motor); % 绘制伯德图作为替代说明 ``` 尽管这里展示了如何创建可视化线性定常系统的频率响应而非传统意义上的方框图,但此过程同样基于相同原理——即利用数学模型来表征实际设备的行为特征。 为了计算最优控制器参数,比如线性二次调节器(LQR),则需定义性能指标函数J,该目标旨在最小化误差累积的同时保持控制力度适中[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叫我阿亮就好了-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值