河马优化算法(HO)-公式原理详解与性能测评

河马优化算法(Hippopotamus Optimization Algorithm,HO)是一种新型的元启发式算法(智能优化算法),灵感来源于河马的固有行为。该成果由Mohammad Hussein Amiri等人于2024年2月发表在Nature旗下子刊《Scientific Reports》上。注意,该算法的作者中包括了Seyedali Mirjalili等优化算法领域大名鼎鼎的学者。熟悉该作者的小伙伴都知道,非常经典的灰狼优化算法、鲸鱼优化算法、蜻蜓优化算法、海洋捕食者算法等种种知名优化算法都是由他发明的,他的算法性能一般都是有保证的,此次发明的河马算法效果也同样不错!由于发表时间较短,谷歌学术上还没人引用!你先用,你就是创新!

原理简介

HO的灵感来源于在河马生活中观察到的三种突出的行为模式。河马群由几只雌性河马、小河马、多只成年雄性河马和一只占优势的雄性河马(群的首领)组成。第一种行为由于天生的好奇心,幼河马和小河马经常表现出偏离群体的倾向。因此,它们可能会变得孤立,成为捕食者的目标。河马的第二种行为模式本质上是防御性的,当它们受到捕食者的攻击或其他生物侵入它们的领地时就会触发。河马表现出防御反应,向捕食者旋转自己,并利用它们可怕的下颚发声来威慑和击退攻击者。

9fdec9e8997241d2aaa597a521a98fb8.png狮子和斑点鬣狗等捕食者意识到了这一现象,并积极避免直接接触河马可怕的下颚,作为预防潜在伤害的措施。第三种的行为模式包括河马逃离捕食者并积极寻求与潜在危险区域保持距离的本能反应。在这种情况下,河马会努力向最近的水体航行,如河流或池塘,因为狮子和斑点鬣狗经常表现出对进入水生环境的厌恶。

一、种群初始化

HO是一种基于种群的优化算法,其中搜索代理是河马。在HO算法中,河马是优化问题的候选解,这意味着每个河马在搜索空间中的位置更新表示决策变量的值。因此,每只河马都被表示为一个向量,河马种群在数学上由一个矩阵来表征。与传统的优化算法类似,HO的初始化阶段涉及随机初始解的生成。在该步骤中,使用以下公式生成决策变量的向量:

50c9933b64074b39a52424330996c9a0.png

其中,χi表示第i个候选解的位置,r是0到1范围内的随机数,lb和ub分别表示第j个决策变量的下界和上界。

二、河马在河流或池塘中的位置更新(勘探阶段)

河马群由几只成年雌性河马、小牛河马、多只成年雄性河马和占主导地位的雄性河马(群的首领)组成。基于目标函数值迭代来确定优势河马(最小化问题的最小值和最大化问题的最大值)。通常情况下,河马往往会聚集在彼此很近的地方。占主导地位的雄性河马保护牛群和领地免受潜在威胁。多只雌性河马被安置在雄性河马周围。成年后,雄性河马会被占优势的雄性从牛群中赶走。随后,这些被驱逐的雄性个体被要求吸引雌性,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

偶尔摸点鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值