推荐一个开源的医疗大语言模型综合评价框架。
项目链接
https://github.com/MediaBrain-SJTU/GenMedicalEval
项目简介
我们提出了一个医疗大语言模型的综合评测框架,具有以下三大特点:
1.大规模综合性能评测:GenMedicalEval构建了一个覆盖16大主要科室、3个医生培养阶段、6种医学临床应用场景、基于40,000+道医学考试真题和55,000+三甲医院患者病历构建的总计100,000+例医疗评测数据。这一数据集从医学基础知识、临床应用、安全规范等层面全面评估大模型在真实医疗复杂情境中的整体性能,弥补了现有评测基准未能覆盖医学实践中众多实际挑战的不足。
2.深入细分的多维度场景评估:GenMedicalEval融合了医师的临床笔记与医学影像资料,围绕检查、诊断、治疗等关键医疗场景,构建了一系列多样化和主题丰富的生成式评估题目,为现有问答式评测模拟真实临床环境的开放式诊疗流程提供了有力补充。
3.创新性的开放式评估指标和自动化评估模型:为解决开放式生成任务缺乏有效评估指标的难题,GenMedicalEval采用先进的结构化抽取和术语对齐技术,构建了一套创新的生成式评估指标体系,这一体系能够精确衡量生成答案的医学知识准确性。进一步地,基于自建知识库训练了与人工评价相关性较高的医疗自动评估模型,提供多维度医疗评分和评价理由。这一模型的特点是无数据泄露和自主可控,相较于GPT-4等其他模型,具有独特优势。
1. 评测维度
GenMedicalEval从基础知识能力、临床应用能力、安全规范能力三个维度对医疗大语言模型进行全面综合的评测。
1.1. 基础知识能力
为了评测医疗大语言模型的基础知识能力,我们收集了从执业医师考试到主治医师考试层层递进且全面综合的医学考试题。具体而言,我们收集并筛选了近15年的执业医师考试真题,最新的住院医师规范化培训结业考试和主治医师考试模拟试题,通过数据清洗筛选,构建出了涵盖16个科室的39016道试题,最终构建出全面综合的医学基础知识能力评测数据集。
1.2. 临床应用能力
为了评测医疗大语言模型在实际临床应用中的能力,我们收集了经过医疗专家验证和筛选的55,000例真实病例数据以构建与临床应用场景具有高度相关性的评测数据集。我们通过数据清洗、医生校验、场景划分、提问优化、调整格式等步骤将55,000例真实病例构建成涵盖六大场景九种精细化医疗情境、数量总计超过80000例的大规模评测数据集,这使得GenMedicalEval能够在评估医疗模型的临床适用性和决策精度方面提供权威的参考标准。
1.3. 安全规范能力
为了评测医疗大语言模型的安全规范能力,GenMedicalEval从医疗反事实、毒害伦理、患者知情权等角度对医疗模型的安全性与遵守医学规范的能力进行评估。以确保这些模型在提供医疗建议和处理病人信息时既安全又符合道德规范。这有助于建立用户对这些先进技术的信任,确保它们不仅能提高医疗服务的质量,还能保护病人的权益。
2. 评测数据
评测维度 | 类别 | 数据量 | 数据概述 |
---|---|---|---|
基础知识 | CNMLE | 27,248 | 中国医学生和医学专业人 |