欢迎关注公众号“赛文AI药学”!
由《英国医学杂志》发布的研究估计,英国每年约有2.37亿次用药错误,导致约9800万英镑的经济损失和超过1700人失去生命。研究指出,只有约2%的错误可能导致严重伤害,全科医生的错误最少,而养老院的开药者错误最多。这不仅对医疗系统造成了巨大的经济负担,也使无数患者因此失去生命。造成用药错误的原因多种多样,包括处方、配药和用药过程中的失误。然而,在医疗科技不断革新的背景下,人工智能(AI)的出现为解决这一难题提供了新的可能性。
用AI打造“处方安全网”
由牛津大学AI医疗实验室开发的DrugGPT,正是人工智能技术在减少用药错误领域的一次创新尝试。这款AI工具旨在为医生和患者提供用药决策的“安全网”,通过快速生成“第二意见”,帮助医疗专业人士更准确地开具处方。
通过输入患者的病情,DrugGPT可以即时提供推荐药物,同时标注可能的副作用和药物间的相互作用。与其他AI工具不同,DrugGPT的突出特点在于其透明性:不仅提供建议,还详细说明推荐背后的逻辑和参考依据,包括相关研究和临床指导。这种透明度让医生能够审慎地评估和比较建议,在人工智能的辅助下做出更科学的用药决策。
牛津大学AI医疗实验室的负责人大卫·克利夫顿教授(David Clifton)表示:“我们开发的这款工具,不仅是一个助手,更像是医生的‘副驾’。它可以帮助医生与自身的决策进行对比,但决策权始终掌握在人类手中。”
专业表现可媲美医生,但人类仍是关键
根据DrugGPT团队发布的研究预印本,这款AI工具在美国医学执照考试中的表现与人类专家不相上下,这显示了它在复杂医疗场景中的可靠性和精准度。然而,克利夫顿教授强调,DrugGPT的目标并非取代医生,而是通过提供建议和信息支持临床判断。“电脑说不”的机械化决策并不适合医疗领域。
皇家全科医师学院(Royal College of GPs)副主席迈克尔·穆尔霍兰博士(Michael Mulholland)同样表示:“尽管绝大多数情况下医生的处方是正确的,但在高强度工作负荷下,尤其是面对需要同时服用多种药物的患者时,错误可能难以完全避免。引入更先进的安全措施有助于进一步减少人为错误,但我们必须确保新工具在全面推广前经过严格测试和试点,以避免意外后果。”
提升患者用药依从性与理解力
用药错误并不仅仅局限于医生环节。患者因未按医嘱服药导致的“用药不依从”现象,每年给英国国家医疗服务体系(NHS)带来高达3亿英镑的浪费。DrugGPT在这方面也有潜力发挥作用。
牛津大学医院NHS基金会信托顾问医生露西·麦基洛普(Lucy Mackillop)博士指出,DrugGPT通过提供更多药物信息,可以帮助医生与患者进行更有效的沟通,增强患者对药物的理解。“当患者明白用药的必要性和效果时,他们更可能遵从医嘱,这也更有利于药物的效果发挥。”
技术落地需谨慎推进
尽管DrugGPT的潜力令人期待,但AI工具的实施并非一帆风顺。穆尔霍兰博士提醒道,除技术本身外,支持AI工具顺利运转的基础条件也至关重要,例如为全科医疗提供充足的资金和人力支持。此外,在部署过程中,必须确保系统的稳健性,并通过试点发现并解决潜在问题。
人工智能与医疗的未来
DrugGPT的推出标志着人工智能在减少用药错误、提高患者安全方面迈出了重要一步。作为医生的“副驾”,它提供了智能化、数据驱动的支持,同时保留了人类决策的核心地位。
随着技术的不断发展,AI与医疗专业知识的结合或将为医疗行业带来更多突破。从DrugGPT的成功经验来看,未来更多此类工具可能进一步提高医疗服务的质量和效率,为患者带来切实的健康收益。
人工智能的力量不在于取代人类,而在于协同创新。在医疗领域,这种“人机共生”的合作模式无疑是变革的关键。
往期内容荐读:
ChatGPT 在临床药学中的有效性以及人工智能在药物治疗管理中的作用
DDI-GPT:使用知识图谱增强的大模型对药物相互作用进行可解释的预测
诺奖得主David Baker最新Science论文:药学+AI领域迎来新机遇!
AI与药学:ChatGPT与临床培训——药学博士(Pharm-D)学生的看法、担忧和实践
人工智能大模型在用药处方审核的应用潜力:一项跨 12 个临床专科的前瞻性研究
AI用于研究药物扩大适应症:大模型架起药物分子结构与适应症的桥梁
欢迎关注公众号“赛文AI药学”!
赛文AI药学,致力于探索人工智能在药学场景中的创新与应用。