AI与药学|DAPSNet:基于双重注意力机制和患者相似性的药物推荐模型

近年来,电子健康档案(EHR)的广泛应用推动了智能医疗的发展,其中药物推荐作为一项重要任务,可以辅助医生开具更有效、更安全的处方。然而,现有的药物推荐方法往往存在两个关键问题:一是没有充分利用病人完整的就诊历史信息,二是忽略了相似病人的用药信息可以作为重要的参考。

针对以上问题,一篇发表在 Bioinformatics 杂志上的论文(Wu, J. et al. Dual Attention and Patient Similarity Network for drug recommendation. Bioinformatics, 2023, 39(1), btad003)提出了一种名为 DAPSNet 的新型深度学习模型,该模型通过巧妙地融合病人的历史医疗信息和相似病人的疾病状态,实现了更精准、更安全的药物推荐。(关注公众号“”赛文AI药学“,获取更多AI与药学的内容)

论文的核心思想可以概括为: 模拟人类医生的诊疗过程,DAPSNet 首先从病人的历史就诊记录中提取诊断、手术和用药信息,构建全面的病人表征;然后,它会检索具有相似疾病状态的病人及其对应的用药信息,作为当前病人用药的参考;最后,综合以上信息,预测出最终的药物组合。

DAPSNet 的创新之处体现在以下几个方面:

  1. 双重注意力机制构建的病人表征模块: DAPSNet 不仅考虑了诊断和手术信息,还将历史用药信息纳入病人表征的构建中,更加全面地反映了病人的健康状况。同时,它采用了 代码级就诊级 两种注意力机制,分别用于捕捉每次就诊中重要的医疗代码和整个病程中关键的就诊记录,从而更精准地刻画病人的疾病状态。

  2. 新颖的病人检索模块: DAPSNet 构建了一个 病人表征记忆库(PM),存储了所有病人的疾病状态表征和对应的用药组合。在预测时,它会计算当前病人的表征与 PM 中所有病人表征的相似度,并据此检索出相似病人的用药信息。为了更准确地捕捉疾病状态的相似性,DAPSNet 不仅考虑了当前病人的表征与其自身历史表征的相似度(个人历史相似度),还考虑了与其它病人历史表征的相似度(病人历史相似度)。

  3. 基于信息瓶颈原理的信息约束损失函数: 为了避免模型在学习过程中丢失关键信息,并增强模型的鲁棒性,DAPSNet 引入了一种 信息约束损失函数。该损失函数基于信息瓶颈原理,旨在最大化病人表征和药物标签之间的互信息,同时最小化病人表征和输入医疗代码之间的互信息,从而迫使模型学习到更精简、更有效的病人表征。

  4. 融合 EHR 和 DDI 图的药物表征学习: DAPSNet 利用图卷积网络(GCN)对 EHR 图(记录了药物共同出现的频率)和 DDI 图(记录了药物之间的相互作用)进行编码,从而学习到更全面的药物表征,有助于模型预测更安全、更有效的药物组合。

实验结果表明: DAPSNet 在 MIMIC-III 公开数据集上的表现优于现有的 SOTA 方法,在 Jaccard 相似度、F1 分数、PR-AUC 和 ROC-AUC 等指标上分别提升了 1.33%、1.20%、2.03% 和 0.59%。此外,DAPSNet 预测的药物组合具有较低的 DDI 发生率,确保了用药的安全性。

进一步的分析揭示:

  • 随着病人就诊次数的增加,DAPSNet 的性能也随之提升,表明它能够有效地利用病人的历史信息。

  • 消融实验验证了 DAPSNet 中各个模块的有效性,包括双重注意力机制、病人检索模块、信息约束损失函数以及融合 EHR 和 DDI 图的药物表征学习。

  • 与 SOTA 模型的对比实验进一步证明了 DAPSNet 中病人表征学习模块的优越性。

  • 案例分析直观地展示了 DAPSNet 在真实场景中的应用效果,它能够预测出更准确、更安全的药物组合。

DAPSNet 是一种新颖、有效且安全的药物推荐模型,它通过巧妙地融合病人历史信息和相似病人信息,为智能医疗领域带来了新的突破。 这篇论文提出的方法和思路,不仅对药物推荐领域具有重要的参考价值,也为其它基于 EHR 的智能医疗应用提供了新的启示。

论文链接: https://doi.org/10.1093/bioinformatics/btad003

代码链接: https://github.com/andylun96/DAPSNet

关键词: 药物推荐,大模型、人工智能、电子健康档案 (EHR),多重用药,药物-药物相互作用 (DDI),病人表征,双重注意力机制,病人表征记忆库 (PM),信息瓶颈 (IB),信息约束损失,图卷积网络 (GCN),深度学习,MIMIC-III 数据集,纵向数据。

关键词: 药物推荐,大模型、人工智能、电子健康档案 (EHR),多重用药,药物-药物相互作用 (DDI),病人表征,双重注意力机制,病人表征记忆库 (PM),信息瓶颈 (IB),信息约束损失,图卷积网络 (GCN),深度学习,MIMIC-III 数据集,纵向数据。

往期内容荐读:

数智药学的崛起:人工智能赋能药学新未来

数智药师:AI时代药学服务的引领者

智能决策助力药物安全:大模型在临床处方审核中的突破

数字人技术在药学服务中的应用

药师必备:掌握AI,引领药学服务新时代

LEADER - 大模型蒸馏的药物推荐模型

李新刚:《医院药学的创新引擎:ChatGPT的应用与思考》

ChatGPT 在临床药学中的有效性以及人工智能在药物治疗管理中的作用

评估大语言模型在药物基因组学问答任务中的表现:PGxQA

DDI-GPT:使用知识图谱增强的大模型对药物相互作用进行可解释的预测

生成式AI:药学科普的新引擎

诺奖得主David Baker最新Science论文:药学+AI领域迎来新机遇!

AI与药学:ChatGPT与临床培训——药学博士(Pharm-D)学生的看法、担忧和实践

人工智能大模型在用药处方审核的应用潜力:一项跨 12 个临床专科的前瞻性研究

生成式人工智能在中医药学教育中的应用与挑战

PharmacyGPT: AI赋能精准ICU药物治疗

数智药学:信息药师向AI药师的进化

AI用于研究药物扩大适应症:大模型架起药物分子结构与适应症的桥梁

AI与药学:DrugGPT助力减少英国每年2.37亿次用药错误

AI时代下的家庭药师

AI与药学:用药咨询场景的检索增强AI大模型

AI与药学:生成式人工智能如何帮助构建患者药品说明书?

AI与药学:ChatGPT在抗感染治疗中的应用与挑战

AI与药学:大语言模型赋能药物推荐

CancerGPT :基于大语言模型的罕见癌症药物对协同作用少样本预测研究

AI与药学:机器学习预测早期结肠癌中奥沙利铂的疗效

AI与药学| Nature Medicine:大模型MEDIC显著降低药店用药指导错误

欢迎关注公众号“赛文AI药学”!

赛文AI药学,致力于探索人工智能在药学场景中的创新与应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明哲AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值