精准给药策略旨在根据患者个体的特异性数据,优化关键药物的治疗方案,从而提高疗效并减少不良反应。传统精准给药主要依赖于治疗药物监测(TDM),即通过监测血药浓度来调整剂量。然而,随着医学的进步,生物标志物、临床结局等更多数据源被纳入考量,以期更全面地指导个体化用药。近期,人工智能(AI)技术的快速发展为精准给药带来了新的机遇。本文将解读Jeffrey S Barrett在PMC11321806发表的文章 "Artificial Intelligence Opportunities to Guide Precision Dosing Strategies",探讨AI如何赋能精准给药策略,并展望未来的发展方向。(关注公众号“”赛文AI药学“,获取更多AI与药学的内容)
精准给药的历史与现状
Barrett (2024) 在文章中回顾了精准给药的发展历程。早在1969年,就出现了基于药代动力学(PK)和药效动力学(PD)数据的模型指导精准给药工具,用于优化抗凝治疗方案。Roger Jelliffe被誉为精准给药领域的先驱,他在科学原理、TDM现代化、生物分析要求、复杂模型算法、临床评估和实施等方面做出了卓越贡献。
尽管技术不断进步,电子健康记录(EHRs)普及、数据可及性提升、云计算基础设施兴起,加速了模型指导的精准给药(MIPD)的推广,但实际应用仍然有限,且多为单机构内部方案,缺乏数据、模型和决策支持系统的协同共享。
精准医学的背景与AI的潜力
精准医学强调个体化差异,涵盖基因、环境、生活方式等因素,旨在通过个体化策略最大化医疗保健质量。其范畴广泛,包括药物发现、基因组学、健康传播和因果推断等,核心是数据驱动的循证决策。精准医学可以被视为一系列决策规则,根据最新的患者信息推荐行动方案,例如药物选择、剂量调整、给药时间、饮食运动建议等。
AI技术的进步,尤其是在模式识别、复杂问题解决方面的能力,为医疗保健领域带来了变革性机遇。AI算法能够分析海量生物数据,包括基因组学和蛋白质组学数据,从而识别疾病相关靶点,预测药物和疫苗候选物的相互作用。在图像识别和诊断系统中,AI甚至在某些情况下超越了临床医生的水平。AI驱动的临床决策支持系统有望减少诊断错误,辅助医生进行EHR数据提取和文档记录。
文章强调,AI在医疗保健中的作用更应被理解为“增强智能”,而非取代医生。AI可以增强人类的决策能力,在肿瘤学、影像学、初级保健等多个领域提供可操作的见解。例如,基于大量乳腺X线图像和EHR数据训练的AI算法,在乳腺癌预测方面已达到甚至超过放射科医生的水平。Deep Patient等AI工具也展示了在疾病预测方面的潜力,尽管其决策 rationale 尚待完善。约翰霍普金斯大学开发的精准医学分析平台,整合多源数据,为研究人员提供安全的数据分析环境,旨在加速知识发现、提升医疗效率和改善患者结局。
AI赋能精准给药策略
Barrett (2024) 认为,个体化药物治疗不应局限于特定工具或方法,MIPD应突破目前以TDM为中心的局限,与更广泛的精准医学理念相结合。精准医学领域拥有多元化的利益相关者,包括医院、生物制药公司、诊断和生命科学工具公司、商业和学术实验室以及投资者。构建能够促进研究、促进协作并最终为患者提供解决方案的平台至关重要,尤其是在AI被视为精准医学策略重要组成部分的情况下。
AI和机器学习(ML)在精准给药中的应用前景广阔,但评估尚处于初期阶段。ML处理多维数据(如EHR数据)的能力,为AI和ML应用于TDM和MIPD提供了优势。Poweleit等 (2024) 强调,成功实施这些方法需要临床医生、信息学、ML、药代动力学、临床药理学和TDM专家之间的跨领域合作,可能还需要统计学、生物信息学和数据科学的深度参与。
研究对比了群体药代动力学/药效动力学(Pop PK/PD)建模和ML方法。Pop PK/PD建模是药代动力学的核心方法,也是TDM精准给药解决方案的基石,它描述了药物在群体水平的暴露量和疗效,以及个体间变异性和预测性协变量。ML则侧重于最准确的结局预测。尽管Pop PK/PD建模可以被视为一种ML形式,但两者区别在于模型类型。Pop PK/PD建模通常基于PK/PD概念构建结构模型,以获得药理学和生理学上合理的参数估计,而ML则侧重于使用最适用的模型来最小化预测误差。
尽管药代动力学和AI方法整合应用起步较晚,但早在20世纪90年代就已出现将神经网络应用于PK/PD分析和系统的研究。Barrett (2024) 强调,ML将作为传统药代动力学方法的补充,而非替代,共同实现精准给药的目标。关键在于理解研究问题,并根据问题选择合适的工具,可以是ML、传统药代动力学方法,或二者结合。
AI整合带来的优势与挑战
AI整合到现有和未来的精准给药解决方案中的主要优势之一,是处理多样化、大规模、非结构化数据源的能力。超越简单的TDM驱动的精准给药策略,AI整合提供了处理影像数据、EHR数据、基因组数据等机制。然而,许多非传统数据源并非总是存在于机构的EHR系统中,数据识别、管理和整合成为额外的挑战。此外,目前大多数平台 (2024) 尚未提供这种能力,但这并非不可克服。
文章在Table 2中列举了AI增强精准给药在不同治疗领域的潜在应用,包括抗凝、糖尿病、哮喘、结核病和肿瘤等。例如,在抗凝领域,AI可以基于历史数据和个体INR数据评估出血风险;在糖尿病领域,AI可以基于HbA1c数据评估低血糖风险;在哮喘领域,AI可以优化奥马珠单抗剂量以实现个体化的血清IgE降低目标;在结核病领域,AI可以结合TDM和生物标志物水平,个体化抗生素组合和剂量,定制治疗持续时间。在肿瘤领域,AI可以通过整合基因组学、表观基因组学和转录组学数据,预测卵巢癌患者的生存结局和胶质母细胞瘤的进展。
Barrett (2024) 指出,未来的MIPD必然需要扩展,超越以PK为中心、以TDM数据为唯一输入来源的模式。非传统数据类型,如基因组学和影像学数据,是重要的扩展方向。然而,这些数据类型在数据质量评估、数据管理以及与传统MIPD数据源的整合方面带来了挑战。
电子健康记录(EHR)的基础设施作用
全球范围内,各国都在投资构建电子病患护理环境,以衡量和提高医疗保健质量,并控制成本。美国2009年通过的《健康信息技术促进经济和临床健康(HITECH)法案》加速了EHR的普及。EHR包含大量的患者特异性信息,包括人口统计学、诊断、实验室结果、程序、药物、影像学研究结果和临床医生 notes。EHR与计算机医嘱录入(CPOE)系统和临床决策支持工具等应用程序接口。
Barrett (2024) 强调,整合AI方法和技术将是不断发展的MIPD领域的重要组成部分,尤其是在个体化给药的重点从以TDM为中心的方法扩展到更广泛的精准医学计划时。这种整合将包括数据和方法学的要求,并期望与当前的MIPD实施一样,实现无缝集成和严格的资质认证和验证。理想的设置是全球多机构利益相关者进行协作,共同挑战和商定数据和方法学要求,实现透明协作。AI整合也应与商业MIPD和EHR供应商合作,确保未来解决方案的无缝性,并保持现有客户群的现有解决方案的连续性。
Barrett (2024) 的文章清晰地阐述了AI在精准给药策略中的巨大潜力。AI不仅可以处理传统TDM数据,更能够整合来自EHR、基因组学、影像学等多维度、非结构化的数据,实现更全面、更深入的个体化药物治疗。AI并非要取代传统的药代动力学方法,而是作为一种强大的补充,共同推动精准给药的发展。
然而,AI在精准给药领域的应用仍处于早期阶段,面临诸多挑战,包括数据整合与管理、模型验证与解释、临床实施与推广等。未来的发展需要跨学科的合作,包括临床医生、药代动力学家、数据科学家、信息学家等,共同构建开放、协作的平台,推动AI技术在精准给药领域的落地应用,最终惠及广大患者。
参考文献
Barrett, J. S. (2024). Artificial Intelligence Opportunities to Guide Precision Dosing Strategies. Clinical Pharmacology & Therapeutics, 115(7), 1383-1392.
Poweleit, E. A., et al. (2024).
关键词:精准给药;人工智能;机器学习;治疗药物监测;药物代谢动力学;电子健康记录;精准医学;数据整合;AI药学;大模型
往期内容荐读:
ChatGPT 在临床药学中的有效性以及人工智能在药物治疗管理中的作用
DDI-GPT:使用知识图谱增强的大模型对药物相互作用进行可解释的预测
诺奖得主David Baker最新Science论文:药学+AI领域迎来新机遇!
AI与药学:ChatGPT与临床培训——药学博士(Pharm-D)学生的看法、担忧和实践
人工智能大模型在用药处方审核的应用潜力:一项跨 12 个临床专科的前瞻性研究
AI用于研究药物扩大适应症:大模型架起药物分子结构与适应症的桥梁
AI与药学:DrugGPT助力减少英国每年2.37亿次用药错误
CancerGPT :基于大语言模型的罕见癌症药物对协同作用少样本预测研究
AI与药学|DAPSNet:基于双重注意力机制和患者相似性的药物推荐模型
AI与药学| Nature Medicine:大模型MEDIC显著降低药店用药指导错误
AI与药学:基于大模型的多智能体药物不良事件提取系统—MALADE
FastRx:基于 Fastformer 和记忆增强图神经网络的个性化用药推荐模型
AI与药学 | Med-Pal:轻量级大型语言模型在药物咨询领域的应用
AI与药学|当AI遇上老药新用,DrugReAlign—基于大模型的多源提示药物重定位框架
AI与药学 | 大模型赋能用药处方:迈向更清晰、个性化、无偏见的用药指导新时代
AI与药学 | TCM-FP:基于大语言模型微调的中医处方预测
欢迎关注公众号“赛文AI药学”!
赛文AI药学,致力于探索人工智能在药学场景中的创新与应用。