论文阅读(二):LSTD: A Low-Shot Transfer Detector for Object Detection

论文链接:https://arxiv.org/abs/1803.01529

有问题的地方请指出~


摘要

近期,基于大规模数据集,目标检测由了飞速的发展。但是完整标记的数据集并非易得,因此,文章提出了一种新的方法:low-shot transfer detector (LSTD),能够利用源域中充足的知识来构建只有少量训练样本的目标域上的有效检测器。文中的主要贡献有:

1. 提出了灵活的LSTD深度架构,该框架整合了SSD和Faster RCNN的优点,将它们统一到一个深度框架中,该框架能够缓解小样本带来的迁移问题。

2. 引入全新的小样本检测正则化迁移学习框架,使用了迁移知识(transfer knowledge, TK)和背景抑制(background depression, BD)作为正则项,使得充分得利用源域和目标域中的知识。

 

引入

过去的几年里,许多基于深度学习的目标检测方法取得了瞩目的成就,但是这些方法很大程度上依赖于完整标记的大规模的数据,然而在实际实践中,完整标记的数据集是很有限的。(这里值得注意的是,在目标检测问题中,完整标记是指既有类别标签,又有对应类别的物体所在位置的边界框标签)。

对于这一问题,一个普遍的方法是收集额外的容易标注的数据集,但是训练图像缺乏充分的监督,该方法的效果依然较受限制。另一个方法是进行迁移学习。鉴于迁移学习在图像分类问题上的成功范例,考虑将它应用到目标检测问题中,对比与增加简单标注的解决方法,迁移学习不需要额外的数据集,这一点的占优的。更重要的是,源域中的知识将是生成目标域的检测器过程中的有效监督。虽然想法很好,但是基于小样本目标检测的迁移学习依旧是很困难的,原因如下:

1. 将普遍的迁移学习方法应用到目标检测中是不合适的。这是因为在很小目标数据集上进行微调,很难消除检测问题和分类问题之间的不同点。

2. 事实证明,相比于分类问题,在目标检测问题上进行迁移学习,会更容易发生过拟合。这可能是因为目标检测需要学习的知识更多(位置信息和类别信息)。

3. 微调可能会降低可移植性。因为它很可能会忽略源域和目标域中的重要信息。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值