「BSOJ3031」 Nosknah的宝藏 - 状压Dp

题目描述

Nosknah是BSZX默默无闻的一员,他有一个在2009年NOIP 时一日成名的哥哥Hankson,.....,Nosknah喜欢收集宝藏,他知道学校的后花园里面藏有 P个珍品。经过严密调查,他知道后花园分成了N块区域,由 M条无向路径连接。 

Nosknah要从1区域出发,捡完所有的宝藏后从 N区域离开。Nosknah没有Hankson那么聪明,他现在求助你:他最短走多远就能捡完宝藏并离开? 

为了简化问题,我们假设Nosknah拿走珍品不需要花费任何时间。

数据范围

对30%的数据,1≤N≤10,1≤M≤100,0≤P≤5。

对100%的数据,1≤N≤200,1≤M≤10,000,0≤P≤12,道路长度不超过1,000,000,000。 其中,N、M、P、道路长度均为整数。 

分析

看到范围,不难想到状压。先用Floyd预处理出最短距离g,定义f[i][j]为到达第i个珍品的节点,之前的状态为j时的最短距离。则

f[i][j]=\min\{f[k][l]+g[a[k]][a[i]]\},再用lowbit来枚举转移过来的点,再注意初始化和数据范围即可。

代码

#include <iostream>
#include <cstring>
#include <cstdio>
#define lowbit(x) ((x)&-(x))//lowbit(x)为x在2进制下最低位的1 
#define inf 0x7fffffffffffffff/2
using namespace std;
long long g[205][205];
int n,m,p,a[20];
long long f[13][(1<<12)],ans;
int lg[(1<<12)];
int main() {
	scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++)
		for (int j=1;j<=n;j++)
			g[i][j]=inf;
	while (m--) {
		int a,b;
		long long c;
		scanf("%d%d%lld",&a,&b,&c);
		g[a][b]=g[b][a]=min(g[a][b],c);//重边处理 
	}
	scanf("%d",&p);
	for (int i=1;i<=p;i++) scanf("%d",&a[i]);
	for (int i=1;i<=n;i++) g[i][i]=0;//自环处理 
	for (int k=1;k<=n;k++)//Floyd 
		for (int i=1;i<=n;i++)
			for (int j=1;j<=n;j++)
				if (g[i][k]!=inf&&g[k][j]!=inf)
					g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
	for (int i=1;i<=p;i++)
		for (int j=0;j<(1<<p);j++) f[i][j]=inf;
	for (int i=1;i<=p;i++)
		f[i][1<<(i-1)]=g[1][a[i]],lg[1<<(i-1)]=i;
	for (int i=0;i<(1<<p);i++) {
		if (i==lowbit(i)) continue;
		for (int j=i;j;j-=lowbit(j)) {
			for (int k=i-lowbit(j);k;k-=lowbit(k)) {
				int t1=lg[lowbit(j)],t2=lg[lowbit(k)];
				if (t1==t2) continue;
				f[t1][i]=min(f[t1][i],f[t2][i-lowbit(j)]+g[a[t2]][a[t1]]);
			}
		}
	}
	ans=inf;
	for (int i=1;i<=p;i++) {
		ans=min(ans,f[i][(1<<p)-1]+g[a[i]][n]);
	}
	if (ans==inf) printf("-1");
	else printf("%lld",ans);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值