题目描述
Nosknah是BSZX默默无闻的一员,他有一个在2009年NOIP 时一日成名的哥哥Hankson,.....,Nosknah喜欢收集宝藏,他知道学校的后花园里面藏有 P个珍品。经过严密调查,他知道后花园分成了N块区域,由 M条无向路径连接。
Nosknah要从1区域出发,捡完所有的宝藏后从 N区域离开。Nosknah没有Hankson那么聪明,他现在求助你:他最短走多远就能捡完宝藏并离开?
为了简化问题,我们假设Nosknah拿走珍品不需要花费任何时间。
数据范围
对30%的数据,1≤N≤10,1≤M≤100,0≤P≤5。
对100%的数据,1≤N≤200,1≤M≤10,000,0≤P≤12,道路长度不超过1,000,000,000。 其中,N、M、P、道路长度均为整数。
分析
看到范围,不难想到状压。先用Floyd预处理出最短距离g,定义为到达第i个珍品的节点,之前的状态为j时的最短距离。则
,再用lowbit来枚举转移过来的点,再注意初始化和数据范围即可。
代码
#include <iostream>
#include <cstring>
#include <cstdio>
#define lowbit(x) ((x)&-(x))//lowbit(x)为x在2进制下最低位的1
#define inf 0x7fffffffffffffff/2
using namespace std;
long long g[205][205];
int n,m,p,a[20];
long long f[13][(1<<12)],ans;
int lg[(1<<12)];
int main() {
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
g[i][j]=inf;
while (m--) {
int a,b;
long long c;
scanf("%d%d%lld",&a,&b,&c);
g[a][b]=g[b][a]=min(g[a][b],c);//重边处理
}
scanf("%d",&p);
for (int i=1;i<=p;i++) scanf("%d",&a[i]);
for (int i=1;i<=n;i++) g[i][i]=0;//自环处理
for (int k=1;k<=n;k++)//Floyd
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
if (g[i][k]!=inf&&g[k][j]!=inf)
g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
for (int i=1;i<=p;i++)
for (int j=0;j<(1<<p);j++) f[i][j]=inf;
for (int i=1;i<=p;i++)
f[i][1<<(i-1)]=g[1][a[i]],lg[1<<(i-1)]=i;
for (int i=0;i<(1<<p);i++) {
if (i==lowbit(i)) continue;
for (int j=i;j;j-=lowbit(j)) {
for (int k=i-lowbit(j);k;k-=lowbit(k)) {
int t1=lg[lowbit(j)],t2=lg[lowbit(k)];
if (t1==t2) continue;
f[t1][i]=min(f[t1][i],f[t2][i-lowbit(j)]+g[a[t2]][a[t1]]);
}
}
}
ans=inf;
for (int i=1;i<=p;i++) {
ans=min(ans,f[i][(1<<p)-1]+g[a[i]][n]);
}
if (ans==inf) printf("-1");
else printf("%lld",ans);
return 0;
}